Eutrophication, harmful algal blooms, and human health impacts are critical environmental challenges resulting from excess nitrogen and phosphorus in surface waters. Yet we have limited information regarding how wetland characteristics mediate water quality across watershed scales. We developed a large, novel set of spatial variables characterizing hydrological flowpaths from wetlands to streams, that is, "wetland hydrological transport variables," to explore how wetlands statistically explain the variability in total nitrogen (TN) and total phosphorus (TP) concentrations across the Upper Mississippi River Basin (UMRB) in the United States.
View Article and Find Full Text PDFIn water-limited regions worldwide, climate change and population growth threaten to desiccate lakes. As these lakes disappear, water managers have often implicated climate change-induced decreases in precipitation and higher temperature-driven evaporative demand-factors out of their control, while simultaneously constructing dams and drilling new wells into aquifers to permit agricultural expansion. One such shrinking lake is the Sea of Galilee (Lake Kinneret), whose decadal mean level has reached a record low, which has sparked heated debate regarding the causes of this shrinkage.
View Article and Find Full Text PDF