Publications by authors named "Michael L Vetter"

We report here on an approach targeting the host reactive cysteinome to identify inhibitors of host factors required for the infectious cycle of Flaviviruses and other viruses. We used two parallel cellular phenotypic screens to identify a series of covalent inhibitors, exemplified by QL-XII-47, that are active against dengue virus. We show that the compounds effectively block viral protein expression and that this inhibition is associated with repression of downstream processes of the infectious cycle, and thus significantly contributes to the potent antiviral activity of these compounds.

View Article and Find Full Text PDF

Recent advances in biosensing technologies present great potential for medical diagnostics, thus improving clinical decisions. However, creating a label-free general sensing platform capable of detecting multiple biotargets in various clinical specimens over a wide dynamic range, without lengthy sample-processing steps, remains a considerable challenge. In practice, these barriers prevent broad applications in clinics and at patients' homes.

View Article and Find Full Text PDF

Many biological experiments are not compatible with the use of immunofluorescence, genetically encoded fluorescent tags, or FRET-based reporters. Conjugation of existing kinase inhibitors to cell-permeable fluorophores can provide a generalized approach to develop fluorescent probes of intracellular kinases. Here, we report the development of a small molecule probe of Src through conjugation of BODIPY to two well-established dual Src-Abl kinase inhibitors, dasatinib and saracatinib.

View Article and Find Full Text PDF

Many cellular factors are regulated via mechanisms affecting protein conformation, localization, and function that may be undetected by most commonly used RNA- and protein-based profiling methods that monitor steady-state gene expression. Mass-spectrometry-based chemoproteomic profiling provides alternatives for interrogating changes in the functional properties of proteins that occur in response to biological stimuli, such as viral infection. Taking dengue virus 2 (DV2) infection as a model system, we utilized reactive ATP- and ADP-acyl phosphates as chemical proteomic probes to detect changes in host kinase function that occur within the first hour of infection.

View Article and Find Full Text PDF

Cytoplasmic APOBEC3G has been reported to block wild-type human immunodeficiency virus type 1 (HIV-1) infection in some primary cells. It is not known whether cytoplasmic APOBEC3G has residual activity in activated T cells, even though virion-packaged APOBEC3G does restrict HIV-1 in activated T cells. Because we found that APOBEC3G expression is greater in activated CD4(+) T-helper type 1 (Th1) lymphocytes than in T-helper type 2 (Th2) lymphocytes, we hypothesized that residual target cell restriction of incoming Vif-positive virions that lack APOBEC3G, if present, would be greater in Th1 than Th2 lymphocytes.

View Article and Find Full Text PDF

The cytidine deaminases APOBEC3G and APOBEC3F exert anti-HIV-1 activity that is countered by the HIV-1 vif protein. Based on potential transcription factor binding sites in their putative promoters, we hypothesized that expression of APOBEC3G and APOBEC3F would vary with T helper lymphocyte differentiation. Naive CD4+ T lymphocytes were differentiated to T helper type 1 (Th1) and 2 (Th2) effector cells by expression of transcription factors Tbet and GATA3, respectively, as well as by cytokine polarization.

View Article and Find Full Text PDF

The HIV-1 virion infectivity factor (Vif) is required during viral replication to inactivate the host cell anti-viral factor, APOBEC3G (A3G). Vif binds A3G and a Cullin5-ElonginBC E3 ubiquitin ligase complex which results in the proteasomal degradation of A3G. The Vif PPLP motif (amino acids 161-164) is essential for normal Vif function because mutations in this motif reduce the infectivity of virions produced in T-cells.

View Article and Find Full Text PDF