Publications by authors named "Michael L Raymer"

Individuals sojourning at high altitude (≥2,500m) often develop acute mountain sickness (AMS). However, substantial unexplained inter-individual variability in AMS severity exists. Untargeted metabolomics assays are increasingly used to identify novel biomarkers of susceptibility to illness, and to elucidate biological pathways linking environmental exposures to health outcomes.

View Article and Find Full Text PDF

Metabolic efficiency, as a selective force shaping proteomes, has been shown to exist in Escherichia coli and Bacillus subtilis and in a small number of organisms with photoautotrophic and thermophilic lifestyles. Earlier attempts at larger-scale analyses have utilized proxies (such as molecular weight) for biosynthetic cost, and did not consider lifestyle or auxotrophy. This study extends the analysis to all currently sequenced microbial organisms that are amenable to these analyses while utilizing lifestyle specific amino acid biosynthesis pathways (where possible) to determine protein production costs and compensating for auxotrophy.

View Article and Find Full Text PDF

Protein products of highly expressed genes tend to favor amino acids that have lower average biosynthetic costs (i.e., they exhibit metabolic efficiency).

View Article and Find Full Text PDF

Forensic samples containing DNA from two or more individuals can be difficult to interpret. Even ascertaining the number of contributors to the sample can be challenging. These uncertainties can dramatically reduce the statistical weight attached to evidentiary samples.

View Article and Find Full Text PDF

The study of codon usage bias is an important research area that contributes to our understanding of molecular evolution, phylogenetic relationships, respiratory lifestyle, and other characteristics. Translational efficiency bias is perhaps the most well-studied codon usage bias, as it is frequently utilized to predict relative protein expression levels. We present a novel approach to isolating translational efficiency bias in microbial genomes.

View Article and Find Full Text PDF

Genomic sequencing projects are an abundant source of information for biological studies ranging from the molecular to the ecological in scale; however, much of the information present may yet be hidden from casual analysis. One such information domain, trends in codon usage, can provide a wealth of information about an organism's genes and their expression. Degeneracy in the genetic code allows more than one triplet codon to code for the same amino acid, and usage of these codons is often biased such that one or more of these synonymous codons are preferred.

View Article and Find Full Text PDF
Article Synopsis
  • The NMR metabolomics community often relies on empirical data and simplified simulations to evaluate algorithms, but current performance metrics are limited and not always reliable.
  • A new technique has been developed to create realistic synthetic validation sets based on NMR spectroscopic data, allowing for more precise assessment of different algorithms.
  • These synthetic data sets, which reflect complex characteristics of real experimental data, can be downloaded for research purposes at a specified website.
View Article and Find Full Text PDF

Prokaryotic organisms preferentially utilize less energetically costly amino acids in highly expressed genes. Studies have shown that the proteome of Saccharomyces cerevisiae also exhibits this behavior, but only in broad terms. This study examines the question of metabolic efficiency as a proteome-shaping force at a finer scale, examining whether trends consistent with cost minimization as an evolutionary force are present independent of protein function and amino acid physicochemical property, and consistently with respect to amino acid biosynthetic costs.

View Article and Find Full Text PDF

For most prokaryotic organisms, amino acid biosynthesis represents a significant portion of their overall energy budget. The difference in the cost of synthesis between amino acids can be striking, differing by as much as 7-fold. Two prokaryotic organisms, Escherichia coli and Bacillus subtilis, have been shown to preferentially utilize less costly amino acids in highly expressed genes, indicating that parsimony in amino acid selection may confer a selective advantage for prokaryotes.

View Article and Find Full Text PDF

Samples containing DNA from two or more individuals can be difficult to interpret. Even ascertaining the number of contributors can be challenging and associated uncertainties can have dramatic effects on the interpretation of testing results. Using an FBI genotypes dataset, containing complete genotype information from the 13 Combined DNA Index System (CODIS) loci for 959 individuals, all possible mixtures of three individuals were exhaustively and empirically computed.

View Article and Find Full Text PDF

DNA profiling using STRs on the 310 and 3100 Genetic Analyzers routinely generates electropherograms that are analyzed with the GeneScan software available from the instrument's manufacturer, Applied Biosystems. Users have been able to choose from three different smoothing options that have been known to result in significant differences in the peak heights that are reported. Improvements in the underlying algorithm of the most recent version of the software also result in significant and somewhat predictable differences in peak height values.

View Article and Find Full Text PDF

Various biguanide derivatives are used as antihyperglycemic and antimalarial drugs (e.g., 1,1-dimethyl biguanide (metformin), phenylethyl biguanide (phenformin), N-(4-chlorophenyl)-N'-(isopropyl)-imidodicarbonimidic diamide (proguanil)); however, no common mechanism has been suggested in these controversial therapeutic actions.

View Article and Find Full Text PDF