Publications by authors named "Michael L Powell"

Rapid, cost-effective and sensitive detection of nucleic acids has the ability to improve upon current practices employed for pathogen detection in diagnosis of infectious disease and food testing. Furthermore, if assay complexity can be reduced, nucleic acid amplification tests could be deployed in resource-limited and home use scenarios. In this study, we developed a novel Fpg (Formamidopyrimidine DNA glycosylase) probe chemistry, which allows lateral flow detection of amplification in undiluted recombinase polymerase amplification (RPA) reactions.

View Article and Find Full Text PDF

Termination codon readthrough is utilized as a mechanism of expression of a growing number of viral and cellular proteins, but in many cases the mRNA signals that promote readthrough are poorly characterized. Here, we investigated the readthrough signal of Colorado tick fever virus (CTFV) segment 9 RNA (Seg-9). CTFV is the type-species of the genus Coltivirus within the family Reoviridae and is a tick-borne, double-stranded, segmented RNA virus.

View Article and Find Full Text PDF

Termination-dependent reinitiation is used to co-ordinately regulate expression of the M1 and BM2 open-reading frames (ORFs) of the dicistronic influenza B segment 7 RNA. The start codon of the BM2 ORF overlaps the stop codon of the M1 ORF in the pentanucleotide UAAUG and ∼10% of ribosomes terminating at the M1 stop codon reinitiate translation at the overlapping AUG. BM2 synthesis requires the presence of, and translation through, 45 nt of RNA immediately upstream of the UAAUG, known as the 'termination upstream ribosome binding site' (TURBS).

View Article and Find Full Text PDF

Viruses utilize a number of translational control mechanisms to regulate the relative expression levels of viral proteins on polycistronic mRNAs. One such mechanism, that of termination-dependent reinitiation, has been described in a number of both negative- and positive-strand RNA viruses. Dicistronic RNAs which exhibit termination-reinitiation typically have a start codon of the 3'-ORF (open reading frame) proximal to the stop codon of the upstream ORF.

View Article and Find Full Text PDF

Background: Expression of the minor virion structural protein VP2 of the calicivirus murine norovirus (MNV) is believed to occur by the unusual mechanism of termination codon-dependent reinitiation of translation. In this process, following translation of an upstream open reading frame (ORF) and termination at the stop codon, a proportion of 40S subunits remain associated with the mRNA and reinitiate at the AUG of a downstream ORF, which is typically in close proximity. Consistent with this, the VP2 start codon (AUG) of MNV overlaps the stop codon of the upstream VP1 ORF (UAA) in the pentanucleotide UAAUG.

View Article and Find Full Text PDF

Coupled expression of the M1 and BM2 open-reading frames (ORFs) of influenza B from the dicistronic segment 7 mRNA occurs by a process of termination-dependent reinitiation. The AUG start codon of the BM2 ORF overlaps the stop codon of the upstream M1 ORF in the pentanucleotide UAAUG, and BM2 synthesis is dependent upon translation of the M1 ORF and termination at the stop codon. Here, we have investigated the mRNA sequence requirements for BM2 expression.

View Article and Find Full Text PDF

Viruses have evolved a number of translational control mechanisms to regulate the levels of expression of viral proteins on polycistronic mRNAs, including programmed ribosomal frameshifting and stop codon readthrough. More recently, another unusual mechanism has been described, that of termination-dependent re-initiation (also known as stop-start). Here, the AUG start codon of a 3' ORF (open reading frame) is proximal to the termination codon of a uORF (upstream ORF), and expression of the two ORFs is coupled.

View Article and Find Full Text PDF

In pancreatic beta-cells, glucose causes a rapid increase in the rate of protein synthesis. However, the mechanism by which this occurs is poorly understood. In this report, we demonstrate, in the pancreatic beta-cell line MIN6, that glucose stimulates the recruitment of ribosomes onto the mRNA, indicative of an increase in the rate of the initiation step of protein synthesis.

View Article and Find Full Text PDF