The white matter tracts in the living human brain are critical for healthy function, and the diffusion MRI measured in these tracts is correlated with diverse behavioral measures. The technical skills required to analyze diffusion MRI data are complex: data acquisition requires MRI sequence development and acquisition expertise, analyzing raw-data into meaningful summary statistics requires computational neuroimaging and neuroanatomy expertise. The human white matter study field will advance faster if the tract summaries are available in plain data-science-ready format for non-diffusion MRI experts, such as statisticians, computer graphic researchers or data scientists in general.
View Article and Find Full Text PDFBackground: Physical activity is an essential component of a healthy lifestyle. Health clubs encourage sustained healthy lifestyles but are still largely not accessible to people with disabilities. Cost is a barrier for accessibility enhancements.
View Article and Find Full Text PDFThere is much interest in translating neuroimaging findings into meaningful clinical diagnostics. The goal of scientific discoveries differs from clinical diagnostics. Scientific discoveries must replicate under a specific set of conditions; to translate to the clinic we must show that findings using purpose-built scientific instruments will be observable in clinical populations and instruments.
View Article and Find Full Text PDFHere, we describe a quantitative neuroimaging method to estimate the macromolecular tissue volume (MTV), a fundamental measure of brain anatomy. By making measurements over a range of field strengths and scan parameters, we tested the key assumptions and the robustness of the method. The measurements confirm that a consistent quantitative estimate of MTV can be obtained across a range of scanners.
View Article and Find Full Text PDF