Publications by authors named "Michael L Oelze"

Photodynamic therapy (PDT) and sonodynamic therapy (SDT), using nonionizing light and ultrasound to generate reactive oxygen species, offer promising localized treatments for cancers. However, the effectiveness of PDT is hampered by inadequate tissue penetration, and SDT largely relies on pyrolysis and sonoluminescence, which may cause tissue injury and imprecise targeting. To address these issues, we have proposed a mechanochemical dynamic therapy (MDT) that uses free radicals generated from mechanophore-embedded polymers under mechanical stress to produce reactive oxygen species for cancer treatment.

View Article and Find Full Text PDF

A transfer function approach was recently demonstrated to mitigate data mismatches at the acquisition level for a single ultrasound scanner in deep learning (DL)-based quantitative ultrasound (QUS). As a natural progression, we further investigate the transfer function approach and introduce a machine-to-machine (M2M) transfer function, which possesses the ability to mitigate data mismatches at a machine level. This ability opens the door to unprecedented opportunities for reducing DL model development costs, enabling the combination of data from multiple sources or scanners, or facilitating the transfer of DL models between machines.

View Article and Find Full Text PDF

Objective: We demonstrate the use of ultrasound to receive an acoustic signal transmitted from a radiological clip designed from a custom circuit. This signal encodes an identification number and is localized and identified wirelessly by the ultrasound imaging system.

Methods: We designed and constructed the test platform with a Teensy 4.

View Article and Find Full Text PDF

To improve the spatial resolution of power Doppler (PD) imaging, we explored null subtraction imaging (NSI) as an alternative beamforming technique to delay-and-sum (DAS). NSI is a nonlinear beamforming approach that uses three different apodizations on receive and incoherently sums the beamformed envelopes. NSI uses a null in the beam pattern to improve the lateral resolution, which we apply here for improving PD spatial resolution both with and without contrast microbubbles.

View Article and Find Full Text PDF

Null Subtraction Imaging (NSI) is a novel beamforming technique that can produce B-mode images resulting in high spatial resolution and low computational cost compared to other beamforming techniques. Previous work has demonstrated that in addition to a beam pattern with a narrow main lobe and low side lobes, NSI can also reduce or mitigate grating lobes, which can appear when the array pitch is larger than one half the wavelength of the transmitted pulse. These grating lobes can result in imaging artifacts that produce clutter and lower contrast.

View Article and Find Full Text PDF

Objective: The study described here was aimed at assessing the capability of quantitative ultrasound (QUS) based on the backscatter coefficient (BSC) for classifying disease states, such as breast cancer response to neoadjuvant chemotherapy and quantification of fatty liver disease. We evaluated the effectiveness of an in situ titanium (Ti) bead as a reference target in calibrating the system and mitigating attenuation and transmission loss effects on BSC estimation.

Methods: Traditional BSC estimation methods require external references for calibration, which do not account for ultrasound attenuation or transmission losses through tissues.

View Article and Find Full Text PDF

Objectives: The study aims to assess the capability of Quantitative Ultrasound (QUS) based on the backscatter coefficient (BSC) for classifying disease states, such as breast cancer response to neoadjuvant chemotherapy and quantifying fatty liver disease. We evaluate the effectiveness of an titanium (Ti) bead as a reference target in calibrating the system and mitigating attenuation and transmission loss effects on BSC estimation.

Methods: Traditional BSC estimation methods require external references for calibration, which do not account for ultrasound attenuation or transmission losses through tissues.

View Article and Find Full Text PDF

Quantitative ultrasound (QUS) is an imaging technique which includes spectral-based parameterization. Typical spectral-based parameters include the backscatter coefficient (BSC) and attenuation coefficient slope (ACS). Traditionally, spectral-based QUS relies on the radio frequency (RF) signal to calculate the spectral-based parameters.

View Article and Find Full Text PDF

Objective: Abundant research demonstrates that early detection of cancer leads to improved patient prognoses. By detecting cancer earlier, when tumors are in their primary stages, treatment can be applied before metastases have occurred. The presence of microcalcifications (MCs) is indicative of malignancy in the breast, i.

View Article and Find Full Text PDF

Ultrafast ultrasound imaging is essential for advanced ultrasound imaging techniques such as ultrasound localization microscopy (ULM) and functional ultrasound (fUS). Current ultrafast ultrasound imaging is challenged by the ultrahigh data bandwidth associated with the radio frequency (RF) signal, and by the latency of the computationally expensive beamforming process. As such, continuous ultrafast data acquisition and beamforming remain elusive with existing software beamformers based on CPUs or GPUs.

View Article and Find Full Text PDF

Deep learning (DL) can fail when there are data mismatches between training and testing data distributions. Due to its operator-dependent nature, acquisition-related data mismatches, caused by different scanner settings, can occur in ultrasound imaging. As a result, it is crucial to mitigate the effects of these mismatches to enable wider clinical adoption of DL-powered ultrasound imaging and tissue characterization.

View Article and Find Full Text PDF

Deep learning (DL) powered biomedical ultrasound imaging is an emerging research field where researchers adapt the image analysis capabilities of DL algorithms to biomedical ultrasound imaging settings. A major roadblock to wider adoption of DL powered biomedical ultrasound imaging is that acquisition of large and diverse datasets is expensive in clinical settings, which is a requirement for successful DL implementation. Hence, there is a constant need for developing data-efficient DL techniques to turn DL powered biomedical ultrasound imaging into reality.

View Article and Find Full Text PDF

Acoustic communication has been gaining traction as an alternative communication method in nontraditional media, such as underwater or through tissue. Acoustic propagation is known to be a nonlinear phenomenon; nonlinear propagation of acoustic waves in soft tissues at biomedical frequencies and intensities has been widely demonstrated. However, the effects of acoustic nonlinearity on communication performance in biological tissues have not yet been examined.

View Article and Find Full Text PDF

Plane-wave imaging (PWI) with angular compounding has gained in popularity over recent years, because it provides high frame rates and good image properties. However, most linear arrays used in clinical practice have a pitch that is equal to than the wavelength of ultrasound. Hence, the presence of grating lobes is a concern for PWI using multiple transmit angles.

View Article and Find Full Text PDF

Tissue characterization based on the backscatter coefficient (BSC) can be degraded by acoustic nonlinearity. Often, this degradation is due to the method used for obtaining a reference spectrum, i.e.

View Article and Find Full Text PDF

Ensuring the consistency of spectral-based quantitative ultrasound estimates in vivo necessitates accounting for diffraction, system effects, and propagation losses encountered in the tissue. Accounting for diffraction and system effects is typically achieved through planar reflector or reference phantom methods; however, neither of these is able to account for the tissue losses present in vivo between the ultrasound probe and the region of interest. In previous work, the feasibility of small titanium beads as in situ calibration targets (0.

View Article and Find Full Text PDF

Detecting metal ions with a high spatiotemporal resolution is critical to understanding the roles of the metal ions in both healthy and disease states. Although spatiotemporal controls of metal-ion sensors using light have been demonstrated, the lack of penetration depth in tissue and has limited their application. To overcome this limitation, we herein report the use of high-intensity focused ultrasound (HIFU) to remotely deliver on-demand, spatiotemporally resolved thermal energy to activate the DNAzyme sensors at the targeted region both and .

View Article and Find Full Text PDF

Mechanophores are molecular motifs that respond to mechanical perturbance with targeted chemical reactions toward desirable changes in material properties. A large variety of mechanophores have been investigated, with applications focusing on functional materials, such as strain/stress sensors, nanolithography, and self-healing polymers, among others. The responses of engineered mechanophores, such as light emittance, change in fluorescence, and generation of free radicals (FRs), have potential for bioimaging and therapy.

View Article and Find Full Text PDF

Ultrasound localization microscopy (ULM) demonstrates great potential for visualization of tissue microvasculature at depth with high spatial resolution. The success of ULM heavily depends on robust localization of isolated microbubbles (MBs), which can be challenging in vivo especially within larger vessels where MBs can overlap and cluster close together. While MB dilution alleviates the issue of MB overlap to a certain extent, it drastically increases the data acquisition time needed for MBs to populate the microvasculature, which is already on the order of several minutes using recommended MB concentrations.

View Article and Find Full Text PDF

Low intensity focused ultrasound (FUS) therapies use low intensity focused ultrasound waves, typically in combination with microbubbles, to non-invasively induce a variety of therapeutic effects. FUS therapies require pre-therapy planning and real-time monitoring during treatment to ensure the FUS beam is correctly targeted to the desired tissue region. To facilitate more streamlined FUS treatments, we present a system for pre-therapy planning, real-time FUS beam visualization, and low intensity FUS treatment using a single diagnostic imaging array.

View Article and Find Full Text PDF

The emergence of in-body medical devices has provided a means of capturing physiological or diagnostic information and streaming this information outside of the body. Currently, electromagnetic-based communications make up the bulk of in-body medical device communication protocols. Traditional electromagnetic-based solutions are limited in their data rates and available power.

View Article and Find Full Text PDF

The backscatter coefficient (BSC) quantifies the frequency-dependent reflectivity of tissues. Accurate estimation of the BSC is only possible with the knowledge of the attenuation coefficient slope (ACS) of the tissues under examination. In this study, the use of attenuation maps constructed using full angular spatial compounding (FASC) is proposed for attenuation compensation when imaging integrated BSCs.

View Article and Find Full Text PDF

Quantitative ultrasound (QUS) was used to classify rabbits that were induced to have liver disease by placing them on a fatty diet for a defined duration and/or periodically injecting them with CCl. The ground truth of the liver state was based on lipid liver percents estimated via the Folch assay and hydroxyproline concentration to quantify fibrosis. Rabbits were scanned ultrasonically in vivo using a SonixOne scanner and an L9-4/38 linear array.

View Article and Find Full Text PDF

Focused ultrasound (FUS) therapies induce therapeutic effects in localized tissues using either temperature elevations or mechanical stresses caused by an ultrasound wave. During an FUS therapy, it is crucial to continuously monitor the position of the FUS beam in order to correct for tissue motion and keep the focus within the target region. Toward the goal of achieving real-time monitoring for FUS therapies, we have developed a method for the real-time visualization of an FUS beam using ultrasonic backscatter.

View Article and Find Full Text PDF

The ultrasonic attenuation coefficient (ACE) can be used to classify tissue state. Pulse-echo spectral-based attenuation estimation techniques, such as the spectral-log-difference method (SLD), account for beam diffraction effects using a reference phantom having a sound speed close to the sound speed of the sample. Methods like SLD assume linear propagation of ultrasound and do not account for potential acoustic nonlinear distortion of the backscattered power spectra in both sample and reference.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session5rm5o8ohvr5umspfc4krgb6d0uobisk4): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once