Publications by authors named "Michael L Norton"

Tardigrades are renowned for their ability to survive a wide array of environmental stressors. In particular, tardigrades can curl in on themselves while losing a significant proportion of their internal water content to form a structure referred to as a tun. In surviving varying conditions, tardigrades undergo distinct morphological transformations that could indicate different mechanisms of stress sensing and tolerance specific to the stress condition.

View Article and Find Full Text PDF

A previous study found that the capacitive behavior of nanoparticles fed to the silkworm can be delivered to carbonized silk fibers, which can be used to fabricate electrodes for the construction of flexible supercapacitors. However, the tendency of nanoparticles to aggregate decreases the quantity of nanoparticles that enter the silk and therefore reduces the capacitance performance of the prepared carbonized silk. Here, we sprayed ammonium molybdate tetrahydrate (AMT) on the surface of mulberry leaves used for feeding silkworms and investigated the effect of feeding AMT on the growth of silkworms and the properties of spun silk.

View Article and Find Full Text PDF

Early and timely diagnosis of cancer plays a decisive role in appropriate treatment and improves clinical outcomes, improving public health. Significant advances in biosensor technologies are leading to the development of point-of-care (POC) diagnostics, making the testing process faster, easier, cost-effective, and suitable for on-site measurements. Moreover, the incorporation of various nanomaterials into the sensing platforms has yielded POC testing (POCT) platforms with enhanced sensitivity, cost-effectiveness and simplified detection schemes.

View Article and Find Full Text PDF

Field effect transistor (FET) based sensors have attractive features such as small size, ease of mass production, high versatility and comparably low costs. Over the last decade, many FET type biosensors based on various nanomaterials (e.g.

View Article and Find Full Text PDF

DNA nanostructures (DN) are powerful platforms for the programmable assembly of nanomaterials. As applications for DN both as a structural material and as a support for functional biomolecular sensing systems develop, methods enabling the determination of reaction kinetics in real time become increasingly important. In this report, we present a study of the kinetics of streptavidin binding onto biotinylated DN constructs enabled by these planar structures.

View Article and Find Full Text PDF

DNA methylation, a stable and heritable covalent modification which mostly occurs in the context of a CpG dinucleotide, has great potential as a biomarker to detect disease, provide prognoses and predict therapeutic responses. It can be detected in a quantitative manner by many different approaches both genome-wide and at specific gene loci, in various biological fluids such as urine, plasma, and serum, which can be obtained without invasive procedures. The current, classical methods are effective in studying DNA methylation patterns, however, for the most part; they have major drawbacks such as expensive instruments, complicated and time consuming protocols as well as relatively low sensitivity, and high false positive rates.

View Article and Find Full Text PDF

Although there is a long history of the study of the interaction of DNA with carbon surfaces, limited information exists regarding the interaction of complex DNA-based nanostructures with the important material graphite, which is closely related to graphene. In view of the capacity of DNA to direct the assembly of proteins and optical and electronic nanoparticles, the potential for combining DNA-based materials with graphite, which is an ultra-flat, conductive carbon substrate, requires evaluation. A series of imaging studies utilizing Atomic Force Microscopy has been applied in order to provide a unified picture of this important interaction of structured DNA and graphite.

View Article and Find Full Text PDF

Graphene field-effect transistors (GFET) have emerged as powerful detection platforms enabled by the advent of chemical vapor deposition (CVD) production of the unique atomically thin 2D material on a large scale. DNA aptamers, short target-specific oligonucleotides, are excellent sensor moieties for GFETs due to their strong affinity to graphene, relatively short chain-length, selectivity, and a high degree of analyte variability. However, the interaction between DNA and graphene is not fully understood, leading to questions about the structure of surface-bound DNA, including the morphology of DNA nanostructures and the nature of the electronic response seen from analyte binding.

View Article and Find Full Text PDF

CONSPECTUS: DNA based nanotechnology provides a basis for high-resolution fabrication of objects almost without physical size limitations. However, the pathway to large-scale production of large objects is currently unclear. Operationally, one method forward is to use high information content, large building blocks, which can be generated with high yield and reproducibility.

View Article and Find Full Text PDF

Maintaining the structural fidelity of DNA origami structures on substrates is a prerequisite for the successful fabrication of hybrid DNA origami/semiconductor-based biomedical sensor devices. Molybdenum disulfide (MoS) is an ideal substrate for such future sensors due to its exceptional electrical, mechanical and structural properties. In this work, we performed the first investigations into the interaction of DNA origami with the MoS surface.

View Article and Find Full Text PDF

We have developed an approach, which routinely generates ~10 micron long one dimensional (1D) arrays of DNA origami. Coupled with a sequential assembly method with a very short (~1 min) reaction time, this extended platform enables the production, in high yield, of 1D arrays of biomolecules or conjugates.

View Article and Find Full Text PDF

Development of a simple and efficient methodology to control the placement, spacing, and alignment of single-walled carbon nanotubes (SWCNTs) is essential for nanotechnology device application. Building on the growing understanding that the strong π-π interaction between the bases of single-stranded DNA (ssDNA) and CNTs is sufficient not only to drive CNT solubility in water but also to stabilize individual nanotubes against clustering in aqueous solution, a new motif for functionalizing DNA origami (DO) with CNTs is demonstrated. CNTs solubilized via wrapping with ssDNA react with DO constructs displaying linear arrays of ssDNA, leading to immobilization of the CNTs onto the DO scaffold.

View Article and Find Full Text PDF

The exploitation of DNA for the production of nanoscale architectures presents a young yet paradigm breaking approach, which addresses many of the barriers to the self-assembly of small molecules into highly-ordered nanostructures via construct addressability. There are two major methods to construct DNA nanostructures, and in the current review we will discuss the principles and some examples of applications of both the tile-based and DNA origami methods. The tile-based approach is an older method that provides a good tool to construct small and simple structures, usually with multiply repeated domains.

View Article and Find Full Text PDF

The synthesis of multithiolated DNA molecules that can be used to produce self-assembled monolayers of single-stranded DNA oligonucleotides on gold substrates is described. Generation 3 polyamidoamine (PAMAM) dendrimers were conjugated to DNA oligomers and functionalized with ~30 protected thiol groups. The protected thiol groups-thioacetate groups-allowed the dendrimer-DNA constructs to be stored in a buffer solution for at least 2 months before deprotection without any observable decrease in their ability to assemble into functional layers.

View Article and Find Full Text PDF

The frequency response of triangular DNA origami is obtained at room temperature. The sample shows a high impedance at low frequencies, e.g.

View Article and Find Full Text PDF

The temperature dependences of the current-voltage characteristics of a sample of triangular DNA origami deposited in a 100 nm gap between platinum electrodes are measured using a probe station. Below 240 K, the sample shows high impedance, similar to that of the substrate. Near room temperature the current shows exponential behavior with respect to the inverse of temperature.

View Article and Find Full Text PDF

Precisely patterning proteins and other molecules at the nanoscale is crucial to future biosensing and optoelectronic applications. One- and two-dimensional DNA nanoconstructs have proven to be useful scaffolds for nanopatterning. This paper demonstrates the application of nitrilotriacetic acid (NTA) forming chelate complexes to localize histidine (His) tagged proteins via Ni(2+) ions onto DNA based structures.

View Article and Find Full Text PDF

1 microm double-stranded DNA molecules are immobilized between pairs of gold and pairs of platinum microelectrodes with gaps of 0.4 and 1 microm, respectively, and their electrical characteristics are determined under the application of constant and sinusoidal bias voltages. Due to their extremely high impedance for constant voltage bias, the samples of DNA are excellent insulators; however, their impedances show strong frequency dependence in the range of 10 Hz-7.

View Article and Find Full Text PDF

This paper describes the preparation and surface characterization of maleimide-activated silicone elastomer (PDMS(MCC)) followed by covalent functionalization using thiol-terminated DNA sequences (primary oligo). The stability of this attachment chemistry was demonstrated by the retention of the primary oligo through the process of hybridization with a labeled complementary DNA sequence. In these studies, the hybridized labeled DNA oligomers were detected using confocal fluorescence microscopy.

View Article and Find Full Text PDF