The ability for neurons to generate rebound bursts following inhibitory synaptic input relies on ion channels that respond in a unique fashion to hyperpolarization. Inward currents provided by T-type calcium channels (I(T)) and hyperpolarization-activated HCN channels (I(H)) increase in availability upon hyperpolarization, allowing for a rebound depolarization after a period of inhibition. Although rebound responses have long been recognized in deep cerebellar nuclear (DCN) neurons, the actual extent to which I(T) and I(H) contribute to rebound spike output following physiological levels of membrane hyperpolarization has not been clearly established.
View Article and Find Full Text PDFNeurons of the deep cerebellar nuclei (DCN) play a critical role in defining the output of cerebellum in the course of encoding Purkinje cell inhibitory inputs. The earliest work performed with in vitro preparations established that DCN cells have the capacity to translate membrane hyperpolarizations into a rebound increase in firing frequency. The primary means of distinguishing between DCN neurons has been according to cell size and transmitter phenotype, but in some cases, differences in the firing properties of DCN cells maintained in vitro have been reported.
View Article and Find Full Text PDFLarge diameter cells in rat deep cerebellar nuclei (DCN) can be distinguished according to the generation of a transient or weak rebound burst and the expression of T-type Ca(2+) channel isoforms. We studied the ionic basis for the distinction in burst phenotypes in rat DCN cells in vitro. Following a hyperpolarization, transient burst cells generated a high-frequency spike burst of < or = 450 Hz, whereas weak burst cells generated a lower-frequency increase (<140 Hz).
View Article and Find Full Text PDFThe interaction between avidin and biotin or streptavidin and biotin forms the basis of several widely used immunohistochemical techniques. An assumption inherent to these techniques is that endogenous biotin is not present in the tissue in detectable quantities, as neither avidin nor streptavidin can discriminate between endogenous biotin and biotinylated antibodies. However, biotin is a known cofactor for numerous carboxylases required in oxidative metabolism, raising the possibility for potential false-positive results in many tissues.
View Article and Find Full Text PDFThe contribution of Purkinje cells to cerebellar motor coordination and learning is determined in part by the chronic and acute effects of climbing fiber (CF) afferents. Whereas the chronic effects of CF discharge, such as the depression of conjunctive parallel fiber (PF) inputs, are well established, the acute cellular functions of CF discharge remain incompletely understood. In rat cerebellar slices, we show that CF discharge presented at physiological frequencies substantially modifies the frequency and pattern of Purkinje cell spike output in vitro.
View Article and Find Full Text PDFSpike output in many neuronal cell types is affected by low-voltage-activated T-type calcium currents arising from the Ca(v)3.1, Ca(v)3.2 and Ca(v)3.
View Article and Find Full Text PDFT-type calcium channels are thought to transform neuronal output to a burst mode by generating low voltage-activated (LVA) calcium currents and rebound burst discharge. In this study we assess the expression pattern of the three different T-type channel isoforms (Ca(v)3.1, Ca(v)3.
View Article and Find Full Text PDFThe modification of first-spike latencies by low-threshold and inactivating K+ currents (IA) have important implications in neuronal coding and synaptic integration. To date, cells in which first-spike latency characteristics have been analyzed have shown that increased hyperpolarization results in longer first-spike latencies, producing a monotonic relationship between first-spike latency and membrane voltage. Previous work has established that cerebellar stellate cells express members of the Kv4 potassium channel subfamily, which underlie IA in many central neurons.
View Article and Find Full Text PDFPurkinje cells (PCs) generate the sole output of the cerebellar cortex and govern the timing of action potential discharge from neurons of the deep cerebellar nuclei (DCN). Here, we examine how voltage-gated Kv1 K+ channels shape intrinsically generated and synaptically controlled behaviors of PCs and address how the timing of DCN neuron output is modulated by manipulating PC Kv1 channels. Kv1 channels were studied in cerebellar slices at physiological temperatures with Kv1-specific toxins.
View Article and Find Full Text PDFHigh-frequency firing neurons are found in numerous central systems, including the auditory brainstem, thalamus, hippocampus, and neocortex. The kinetics of high-threshold K+ currents (IK(HT)) from the Kv3 subfamily has led to the proposal that these channels offset cumulative Na+ current inactivation and stabilize tonic high-frequency firing. However, all high-frequency firing neurons, examined to date, also express low-threshold K+ currents (IK(LT)) that have slower kinetics and play an important role in setting the subthreshold and filtering properties of the neuron.
View Article and Find Full Text PDFThe vitamin biotin is an endogenous molecule that acts as an important cofactor for several carboxylases in the citric acid cycle. Disorders of biotin metabolism produce neurological symptoms that range from ataxia to sensory loss, suggesting the presence of biotin in specific functional systems of the CNS. Although biotin has been described in some cells of nonmammalian nervous systems, the distribution of biotin in mammalian CNS is virtually unknown.
View Article and Find Full Text PDFThe extracellular matrix of adult neural tissue contains chondroitin sulphated proteogylcans that form a dense peri-neuronal net surrounding the cell body and proximal dendrites of many neuronal classes. Development of the peri-neuronal net beyond approximately postnatal day 17 obscures visualization and often access by patch electrodes to neuronal membranes with the result that patch clamp recordings are most readily obtained from early postnatal animals. We describe a technique in which the surface tension of a sucrose-based medium promotes partial dissociation of thin tissue slices from adult tissue.
View Article and Find Full Text PDF