Acetaminophen (ACT), sulfapyridine (SPY), ibuprofen (IBP) and docusate (DCT) are pharmaceuticals with widespread usage that experience incomplete removal in wastewater treatment systems. While further removal of these pharmaceuticals from wastewater effluent is desired prior to beneficial reuse, additional treatment technologies are often expensive and energy intensive. This study evaluated the ability of biochar produced from cotton gin waste (CG700) and walnut shells (WS800) to remove four pharmaceuticals (ACT, SPY, IBP, and DCT) from aqueous solution.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) are a collective name for thousands of synthetic compounds produced to enhance consumer and industrial products since the 1940s. They do not easily degrade, and some are known to pose serious ecological and human health concerns at trace concentrations (ng L levels). Per- and polyfluoroalkyl substances persist in treated wastewater and are inadvertently introduced into the environment when treated wastewater is reused as an irrigation source.
View Article and Find Full Text PDFDuring the COVID-19 pandemic, wastewater surveillance was leveraged as a powerful tool for monitoring community-scale health. Further, the well-known persistence of some pharmaceuticals through wastewater treatment plants spurred concerns that increased usage of pharmaceuticals during the pandemic would increase the concentrations in wastewater treatment plant effluent. We collected weekly influent and effluent samples from May 2020 through May 2021 from two wastewater treatment plants in central Pennsylvania, the Penn State Water Reclamation Facility and the University Area Joint Authority, that provide effluent for beneficial reuse, including for irrigation.
View Article and Find Full Text PDFAs analytical capabilities in the early 2000s began to enable the detection of chemicals in environmental media at increasingly small concentrations, chemicals with the potential to cause adverse human and ecosystem health effects began to be found nearly ubiquitously worldwide. The types of chemicals that were targeted for analysis included natural and synthetic hormones, human and veterinary pharmaceuticals, chemicals in personal care products, novel pesticides, nanoparticles, microplastics, and other chemicals of natural and synthetic origin. The impacts of these chemicals on environmental and human health in many cases remain unknown.
View Article and Find Full Text PDFThere is increasing concern over the presence of per- and polyfluoroalkyl substances (PFAS) in biosolids, while sales in commercially available biosolid-based products used as soil amendments are also increasing. Here, the occurrence of 17 perfluoroalkyl acids (PFAAs) present in 13 commercially available biosolid-based products, six organic composts (manure, mushroom, peat, and untreated wood), and one food and yard waste compost were studied. The PFAA concentration ranges observed are as follows: biosolid-based products (9.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) have been used in a variety of consumer and industrial products and are known to accumulate in sewage sludge due to sorption and their recalcitrant nature. Treatment processes ensure safe and high-quality biosolids by reducing the potential for adverse environmental impacts such as pathogen levels; however, they have yet to be evaluated for their impact on the fate of PFAS. The objective of this study was to compare PFAS concentrations in four commercially available biosolid-based products that received different types of treatments: heat treatment, composting, blending, and thermal hydrolysis.
View Article and Find Full Text PDFThe natural manure-borne hormones, 17α-estradiol (17α-E2), 17β-estradiol (17β-E2), and estrone (E1), are routinely detected in surface water near agricultural land and wastewater treatment facilities. Once in the stream network, hormones may enter the sediment bed where they are subject to anaerobic conditions. This study focuses on the difference in anaerobic transformation rates and formation of metabolites from 17α-E2, 17β-E2, and E1 (applied at ∼3.
View Article and Find Full Text PDFConsiderable research has focused on the fate of 17β-estradiol (17β-E2) given its high estrogenic potency and frequent detection in the environment; however, little is known about the fate behavior of 17α-estradiol (17α-E2) although it often dominates in some animal feces, and recently has been shown to have similar impacts as the β-isomer. In this study, the aerobic biotransformation rates of 17α-E2 and 17β-E2 applied at 50 μg kg(-1) soil and metabolite trends were quantified in batch microcosms at ~21°C and 70-85% field capacity using two soils with different taxonomic properties. Soils were extracted at designated times over a 3-week period and analyzed over time using negative electrospray ionization tandem mass spectrometry.
View Article and Find Full Text PDFThe application of manure and biosolids onto agricultural land has increased the risk of estrogenic exposure to aquatic systems. Both αE2 and βE2 have been routinely detected in surface and ground waters with higher concentrations reported near concentrated animal feeding operations and agricultural fields. Although movement through the soil to a water body is highly dependent on hormone-soil interactions, to date, only the interaction of βE2 with soils has been characterized despite αE2 often being the more common form excreted by livestock such as beef cattle and dairy.
View Article and Find Full Text PDF