Recycling lithium-ion batteries (LIBs) can supplement critical materials and improve the environmental sustainability of LIB supply chains. In this work, environmental impacts (greenhouse gas emissions, water consumption, energy consumption) of industrial-scale production of battery-grade cathode materials from end-of-life LIBs are compared to those of conventional mining supply chains. Converting mixed-stream LIBs into battery-grade materials reduces environmental impacts by at least 58%.
View Article and Find Full Text PDFThe efficient electro-reduction of CO2 to chemical fuels and the electro-oxidation of hydrocarbons for generating electricity are critical toward a carbon-neutral energy cycle. The simplest reactions involving carbon species in solid-oxide fuel cells and electrolyzer cells are CO oxidation and CO2 reduction, respectively. In catalyzing these reactions, doped ceria exhibits a mixed valence of Ce(3+) and Ce(4+), and has been employed as a highly active and coking-resistant electrode.
View Article and Find Full Text PDFSurface redox-active centres in transition-metal oxides play a key role in determining the efficacy of electrocatalysts. The extreme sensitivity of surface redox states to temperatures, to gas pressures and to electrochemical reaction conditions renders them difficult to investigate by conventional surface-science techniques. Here we report the direct observation of surface redox processes by surface-sensitive, operando X-ray absorption spectroscopy using thin-film iron and cobalt perovskite oxides as model electrodes for elevated-temperature oxygen incorporation and evolution reactions.
View Article and Find Full Text PDF