Nontypeable Haemophilus influenzae (NTHi) has emerged as a dominant mucosal pathogen causing acute otitis media (AOM) in children, acute sinusitis in children and adults, and acute exacerbations of chronic bronchitis in adults. Consequently, there is an urgent need to develop a vaccine to protect against NTHi infection. A multi-component vaccine will be desirable to avoid emergence of strains expressing modified proteins allowing vaccine escape.
View Article and Find Full Text PDFWe have determined the 1.8 Å X-ray crystal structure of nonlipidated (i.e.
View Article and Find Full Text PDFRNases are varied in the RNA structures and sequences they target for cleavage and are an important type of enzyme in cells. Despite the numerous examples of RNases known, and of those with determined three-dimensional structures, relatively few examples exist with the RNase bound to intact cognate RNA substrate prior to cleavage. To better understand RNase structure and sequence specificity for RNA targets, methods used to assemble these enzyme complexes trapped in a pre-cleaved state have been developed for a number of different RNases.
View Article and Find Full Text PDFPolyriboadenylic [poly(rA)] strands of sufficient length form parallel double helices in acidic and/or ammonium-containing conditions. Poly(rA) duplexes in acidic conditions are held together by A-A base-pairing also involving base interactions with the phosphate backbone. Traditional UV-melting studies of parallel poly(A) duplexes have typically examined homo-duplex formation of a single nucleic acid species in solution.
View Article and Find Full Text PDFStaufen is a dsRNA-binding protein involved in many aspects of RNA regulation, such as mRNA transport, Staufen-mediated mRNA decay and the regulation of mRNA translation. It is a modular protein characterized by the presence of conserved consensus amino acid sequences that fold into double-stranded RNA binding domains (RBDs) as well as degenerated RBDs that are instead involved in protein-protein interactions. The variety of biological processes in which Staufen participates in the cell suggests that this protein associates with many diverse RNA targets, some of which have been identified experimentally.
View Article and Find Full Text PDFAlthough peroxisome proliferator-activated receptor-γ (PPARγ) coactivator 1α (PGC-1α) is a well-established transcriptional coactivator for the metabolic adaptation of mammalian cells to diverse physiological stresses, the molecular mechanism by which it functions is incompletely understood. Here we used in vitro binding assays, X-ray crystallography, and immunoprecipitations of mouse myoblast cell lysates to define a previously unknown cap-binding protein 80 (CBP80)-binding motif (CBM) in the C terminus of PGC-1α. We show that the CBM, which consists of a nine-amino-acid α helix, is critical for the association of PGC-1α with CBP80 at the 5' cap of target transcripts.
View Article and Find Full Text PDFWe have solved at 1. 07: Å resolution the X-ray crystal structure of a polyriboadenylic acid (poly(rA)) parallel and continuous double helix. Fifty-nine years ago, double helices of poly(rA) were first proposed to form at acidic pH.
View Article and Find Full Text PDFTrends Biochem Sci
July 2014
The canonical double-stranded RNA (dsRNA)-binding domain (dsRBD) is composed of an α1-β1-β2-β3-α2 secondary structure that folds in three dimensions to recognize dsRNA. Recently, structural and functional studies of divergent dsRBDs revealed adaptations that include intra- and/or intermolecular protein interactions, sometimes in the absence of detectable dsRNA-binding ability. We describe here how discrete dsRBD components can accommodate pronounced amino-acid sequence changes while maintaining the core fold.
View Article and Find Full Text PDFStaufen1 (STAU1)-mediated mRNA decay (SMD) degrades mammalian-cell mRNAs that bind the double-stranded RNA (dsRNA)-binding protein STAU1 in their 3' untranslated region. We report a new motif, which typifies STAU homologs from all vertebrate classes, that is responsible for human STAU1 (hSTAU1) homodimerization. Our crystal structure and mutagenesis analyses reveal that this motif, which we named the Staufen-swapping motif (SSM), and the dsRNA-binding domain 5 ('RBD'5) mediate protein dimerization: the two SSM α-helices of one molecule interact primarily through a hydrophobic patch with the two 'RBD'5 α-helices of a second molecule.
View Article and Find Full Text PDFStaufen (STAU)1-mediated mRNA decay (SMD) is a posttranscriptional regulatory mechanism in mammals that degrades mRNAs harboring a STAU1-binding site (SBS) in their 3'-untranslated regions (3' UTRs). We show that SMD involves not only STAU1 but also its paralog STAU2. STAU2, like STAU1, is a double-stranded RNA-binding protein that interacts directly with the ATP-dependent RNA helicase up-frameshift 1 (UPF1) to reduce the half-life of SMD targets that form an SBS by either intramolecular or intermolecular base-pairing.
View Article and Find Full Text PDFThe nucleotidyl transfer reaction leading to formation of the first phosphodiester bond has been followed in real time by Raman microscopy, as it proceeds in single crystals of the N4 phage virion RNA polymerase (RNAP). The reaction is initiated by soaking nucleoside triphosphate (NTP) substrates and divalent cations into the RNAP and promoter DNA complex crystal, where the phosphodiester bond formation is completed in about 40 min. This slow reaction allowed us to monitor the changes of the RNAP and DNA conformations as well as bindings of substrate and metal through Raman spectra taken every 5 min.
View Article and Find Full Text PDFIn this issue of Molecular Cell, Chakrabarti et al. (2011) structurally reveal how UPF1, an RNA helicase that plays a central role in nonsense-mediated mRNA decay, is conformationally converted from a largely inactive state to an active state upon UPF2 binding.
View Article and Find Full Text PDFWe have determined the X-ray crystal structures of the pre- and postcatalytic forms of the initiation complex of bacteriophage N4 RNA polymerase that provide the complete set of atomic images depicting the process of transcript initiation by a single-subunit RNA polymerase. As observed during T7 RNA polymerase transcript elongation, substrate loading for the initiation process also drives a conformational change of the O-helix, but only the correct base pairing between the +2 substrate and DNA base is able to complete the O-helix conformational transition. Substrate binding also facilitates catalytic metal binding that leads to alignment of the reactive groups of substrates for the nucleotidyl transfer reaction.
View Article and Find Full Text PDFColiphage N4 virion-encapsidated RNA polymerase (vRNAP) is a member of the phage T7-like single-subunit RNA polymerase (RNAP) family. Its central domain (mini-vRNAP) contains all RNAP functions of the full-length vRNAP, which recognizes a 5 to 7 base pair stem and 3 nucleotide loop hairpin DNA promoter. Here, we report the X-ray crystal structures of mini-vRNAP bound to promoters.
View Article and Find Full Text PDF