Publications by authors named "Michael L Eastwood"

Methane emissions from solid waste may represent a substantial fraction of the global anthropogenic budget, but few comprehensive studies exist to assess inventory assumptions. We quantified emissions at hundreds of large landfills across 18 states in the United States between 2016 and 2022 using airborne imaging spectrometers. Spanning 20% of open United States landfills, this represents the most systematic measurement-based study of methane point sources of the waste sector.

View Article and Find Full Text PDF

Carbon dioxide and methane emissions are the two primary anthropogenic climate-forcing agents and an important source of uncertainty in the global carbon budget. Uncertainties are further magnified when emissions occur at fine spatial scales (<1 km), making attribution challenging. We present the first observations from NASA's Earth Surface Mineral Dust Source Investigation (EMIT) imaging spectrometer showing quantification and attribution of fine-scale methane (0.

View Article and Find Full Text PDF

Understanding, prioritizing, and mitigating methane (CH) emissions requires quantifying CH budgets from facility scales to regional scales with the ability to differentiate between source sectors. We deployed a tiered observing system for multiple basins in the United States (San Joaquin Valley, Uinta, Denver-Julesburg, Permian, Marcellus). We quantify strong point source emissions (>10 kg CH h) using airborne imaging spectrometers, attribute them to sectors, and assess their intermittency with multiple revisits.

View Article and Find Full Text PDF

Future global Visible Shortwave Infrared Imaging Spectrometers, such as the Surface Biology and Geology (SBG) mission, will regularly cover the Earth's entire terrestrial land area. These missions need high fidelity atmospheric correction to produce consistent maps of terrestrial and aquatic ecosystem traits. However, estimation of surface reflectance and atmospheric state is computationally challenging, and the terabyte data volumes of global missions will exceed available processing capacity.

View Article and Find Full Text PDF

Methane is a powerful greenhouse gas and is targeted for emissions mitigation by the US state of California and other jurisdictions worldwide. Unique opportunities for mitigation are presented by point-source emitters-surface features or infrastructure components that are typically less than 10 metres in diameter and emit plumes of highly concentrated methane. However, data on point-source emissions are sparse and typically lack sufficient spatial and temporal resolution to guide their mitigation and to accurately assess their magnitude.

View Article and Find Full Text PDF
Article Synopsis
  • The study assesses the intrinsic spectral dimensionality of Earth's solar-reflected light, focusing on the diversity of spectral content accessible through remote sensing in the 0.38 - 2.5 μm range.
  • AVIRIS-C, a NASA airborne instrument, conducted a multi-year survey across California, covering various land cover types, providing a systematic analysis of spectral dimensionality based on space and time.
  • Results indicate a significant diversity in physical processes detectable by imaging spectrometers, with dimensionality estimates ranging from the low 20s to about 50, highlighting the rich spectral information available for environmental monitoring.
View Article and Find Full Text PDF