Objective: The present study investigated the impact of two different light intensities on the pain-modulated pupillary light response (PLR). Additionally, it aimed to demonstrate parasympathetic and sympathetic influences on PLR parameters in response to pain, as predicted by functional models.
Method: A total of 24 participants were included in a randomized, repeated-measures design.
As part of the energy transition in Germany, high-voltage overhead power lines will be operated using hybrid systems that combine alternating and direct current (AC and DC). The degree to which humans perceive hybrid electric fields (EFs) is dependent on the proportion of both EF types. To investigate the impact of the DC component, a study assessed 49 participants with above-average EF detection ability under conditions with a low DC component of 1-4 kilovolts per meter (kV/m) and varying AC EFs between 1 and 14 kV/m.
View Article and Find Full Text PDFElectric energy is essential to today's society. To cope with global higher demand while minimizing land use, efficient high voltage direct current (HVDC) power lines are planned to be mounted on existing alternating current (AC) structures leading to electric fields (EFs) from both AC and DC transmission lines in hybrid configurations. Due to the close proximity to residential areas, the investigation of human hybrid EF perception and underlying mechanisms will be useful to project permitting.
View Article and Find Full Text PDFBackground: The PLR (pupillary light reflex) can be a marker for pathological medical conditions, such as neurodegenerative or mental health disorders and diseases as well as marker for physiological alterations, such as age, sex or iris color. PLR alterations have been described in people after alcohol consumption, as well. However, the effect of sleep deprivation on PLR parameters is still under debate.
View Article and Find Full Text PDFBackground: In the course of the ongoing transition of electric energy systems, transmission corridors are often upgraded to higher voltages and other technologies leading to another quality of human exposure. The study aims to determine human detection thresholds for direct current (DC), alternating current (AC), and hybrid electric fields (various DC; constant AC).
Methods: A total of 203 participants were exposed to DC, AC, and hybrid electric fields (EFs) in a highly specialized whole-body exposure laboratory using a double-blind experimental setting.
As part of the energy transition in Germany, high-voltage direct current (HVDC) lines producing DC electric fields (EF) are in planning. Since the human perception of DC EF was rarely investigated in the past, we aimed to identify environmental and experimental factors influencing the human perception of direct current (DC) EF, alternating current (AC) EF, and the co-exposure of DC EF and AC EF (hybrid EF) under whole-body exposure. Additionally, first estimates of DC EF and AC EF perception thresholds as well as differences in human perception of DC EF and AC EF concerning the type of sensation experienced and the affected body part were evaluated.
View Article and Find Full Text PDFWe investigated the impact of perceptual processing demands on visual working memory of coloured complex random polygons during change detection. Processing load was assessed by pupil size (Exp. 1) and additionally slow wave potentials (Exp.
View Article and Find Full Text PDF