Publications by authors named "Michael Kokkolaras"

The rapid spread of the coronavirus disease COVID-19 has imposed clinical and financial burdens on hospitals and governments attempting to provide patients with medical care and implement disease-controlling policies. The transmissibility of the disease was shown to be correlated with the patient's viral load, which can be measured during testing using the cycle threshold (Ct). Previous models have utilized Ct to forecast the trajectory of the spread, which can provide valuable information to better allocate resources and change policies.

View Article and Find Full Text PDF

Nanoparticle drug delivery better targets neoplastic lesions than free drugs and thus has emerged as a safer form of cancer therapy. Nanoparticle design variables are important determinants of efficacy as they influence the drug biodistribution and pharmacokinetics. Previously, we determined optimal designs through mechanistic modeling and optimization.

View Article and Find Full Text PDF

Nanoparticle-mediated drug delivery may be a promising alternative to traditional chemotherapy of high systemic toxicity. Tumor tissue architecture poses a challenge to delivery of nanoparticles. Small and spherical nanoparticles have poor adherence to the tumor vasculature, while larger and more eccentric ones create high heterogeneity in tissue-to-drug exposure.

View Article and Find Full Text PDF

The pharmacokinetics of nanoparticle-borne drugs targeting tumors depends critically on nanoparticle design. Empirical approaches to evaluate such designs in order to maximize treatment efficacy are time- and cost-intensive. We have recently proposed the use of computational modeling of nanoparticle-mediated drug delivery targeting tumor vasculature coupled with numerical optimization to pursue optimal nanoparticle targeting and tumor uptake.

View Article and Find Full Text PDF

A method for optimizing the inner shape of brass instruments using sound simulations is presented. This study considers different objective functions and constraints (representative of both the intonation and the spectrum of the instrument) for a relatively large number of design variables. A complete physics-based model, taking into account the instrument and the musician's embouchure, is used to simulate steady regimes of sounds by means of the harmonic balance technique, the instrument being represented by its input impedance.

View Article and Find Full Text PDF

Nanotherapy may constitute a promising approach to target tumors with anticancer drugs while minimizing systemic toxicity. Computational modeling can enable rapid evaluation of nanoparticle (NP) designs and numerical optimization. Here, an optimization study was performed using an existing tumor model to find NP size and ligand density that maximize tumoral NP accumulation while minimizing tumor size.

View Article and Find Full Text PDF

This work considers vascular stents with tubular geometry assumed to follow a periodic arrangement of repeating unit cells. Structural and hemodynamic metrics are presented to assess alternative stent geometries, each defined by the topology of the unit cell. Structural metrics include foreshortening, elastic recoil and radial stiffness, whereas hemodynamic performance is described by a wall shear stress index quantifying the impact of in-stent restenosis.

View Article and Find Full Text PDF

Nanoparticle (NP)-based drug delivery is a promising method to increase the therapeutic index of anticancer agents with low median toxic dose. The delivery efficiency, corresponding to the fraction of the injected NPs that adhere to the tumor site, depends on NP size a and aspect ratio AR. Values for these variables are currently chosen empirically, which may not result in optimal targeted drug delivery.

View Article and Find Full Text PDF

In motor-vehicle crashes, young school-aged children restrained by vehicle seat belt systems often suffer from abdominal injuries due to submarining. However, the current anthropomorphic test device, so-called "crash dummy", is not adequate for proper simulation of submarining. In this study, a modified Hybrid-III six-year-old dummy model capable of simulating and predicting submarining was developed using MADYMO (TNO Automotive Safety Solutions).

View Article and Find Full Text PDF