Background: Patients undergoing high-risk surgery show haemodynamic instability and an increased risk of morbidity. However, most of the available data concentrate on the intraoperative period. This study aims to characterise patients with advanced haemodynamic monitoring throughout the whole perioperative period using electrical cardiometry.
View Article and Find Full Text PDFIntroduction: Surgical Site Infection (SSI) is a common healthcare-associated infection that imposes a considerable clinical and economic burden on healthcare systems. Advances in wearable sensors and digital technologies have unlocked the potential for the early detection and diagnosis of SSI, which can help reduce this healthcare burden and lower SSI-associated mortality rates.
Methods: In this study, we evaluated the ability of a multi-modal bio-signal system to predict current and developing superficial incisional infection in a porcine model infected with Methicillin Susceptible Staphylococcus Aureus (MSSA) using a bagged, stacked, and balanced ensemble logistic regression machine learning model.
Cardiovascular diseases (CVDs) are one of the leading members of non-communicable diseases. An early diagnosis is essential for effective treatment, to reduce hospitalization time and health care costs. Nowadays, an exercise stress test on an ergometer is used to identify CVDs.
View Article and Find Full Text PDFCompensated shock and hypovolaemia are frequent conditions that remain clinically undetected and can quickly cause deterioration of perioperative and critically ill patients. Automated, accurate and non-invasive detection methods are needed to avoid such critical situations. In this experimental study, we aimed to create a prediction model for stroke volume index (SVI) decrease based on electrical cardiometry (EC) measurements.
View Article and Find Full Text PDFCardiovascular diseases are the main cause of death worldwide, with sleep disordered breathing being a further aggravating factor. Respiratory illnesses are the third leading cause of death amongst the noncommunicable diseases. The current COVID-19 pandemic, however, also highlights the impact of communicable respiratory syndromes.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
Detecting critical events in postoperative care and improving comfort, costs and availability in sleep assessment are two of many areas in which wearable biosignal acquisition can be a viable tool. Modern sensors as well as patch and textile integration facilitate unobtrusive biosignal acquisition, yet placing sensors at different locations across the body is still prevailing. Actigraphy and the electrocardiogram (ECG) are commonly integrated modalities.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
The early detection of occult bleeding is a difficult problem for clinicians because physiological variables such as heart rate and blood pressure that are measured with standard patient monitoring equipment are insensitive to blood loss. In this study, the pulse arrival time (PAT) was investigated as an easily recorded, non-invasive indicator of hypovolemia. A lower body negative pressure (LBNP) study with a stepwise increase of negative pressure was conducted to induce central hypovolemia in a study population of 30 subjects.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
Bioimpedance methods are used in a variety of applications such as impedance tomography, electrodermal activity detection and vascular disease assessment. Recent developments in portable and unobtrusive biosignal acquisition systems facilitate the integration of wearable bioimpedance applications including sleep monitoring, respiration estimation and fluid monitoring. However, the less stable measurement situation in a wearable scenario increases the requirements for the system's accuracy and adaptability.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2017
In the analysis of fingertip photoplethysmograms (PPG), the Pulse Decomposition Analysis (PDA) has emerged as a powerful tool for the extraction of physiologically relevant information from the morphology of single digital volume pulse (DVP) cycles. In previously published works on the PDA, many different models are suggested. In this work, we conducted a data driven approach to address the question of which model to choose for the PDA.
View Article and Find Full Text PDF