Publications by authors named "Michael Klukinov"

Objective: Following a mild traumatic brain injury (mTBI), the most prevalent and profoundly debilitating occurrence is the emergence of an acute and persistent post-traumatic headache (PTH), for which there are presently no approved treatments. A crucial gap in knowledge exists regarding the consequences of an mTBI, which could serve as a foundation for the development of therapeutic approaches. The activation of trigeminal sensory nerve terminals that innervate the calvarial periosteum (CP)-a densely innervated tissue layer covering the calvarial skull-has been implicated in both migraines and PTHs.

View Article and Find Full Text PDF

Background And Purpose: The intranasal administration of oxytocin (OT) reduces migraine headaches through activation of the oxytocin receptor (OTR). Magnesium ion (Mg concentration is critical to the activation of the OTR, and a low serum Mg concentration is predictive of a migraine headache. We, therefore, examined the functional impact of Mg concentration on OT-OTR binding efficacy using two complimentary bioassays.

View Article and Find Full Text PDF

Pain, particularly chronic pain, remains one of the most debilitating and difficult-to-treat conditions in medicine. Chronic pain is difficult to treat, in part because it is associated with plastic changes in the peripheral and central nervous systems. Polypeptides are linear organic polymers that are highly selective molecules for neurotransmitter and other nervous system receptors sites, including those associated with pain and analgesia, and so have tremendous potential in pain therapeutics.

View Article and Find Full Text PDF

Background: Approximately 1.7 million Americans sustain a traumatic brain injury (TBI) each year and chronic pain is a common complication.

Objective: We studied the effects of intranasally administered oxytocin as a potential treatment for chronic pain in an animal model of mild TBI.

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA) is a bioactive lipid that impacts neurological outcomes after neurotrauma by inhibiting neuroregeneration, promoting inflammation, and contributing to behavioral deficits. Blocking LPA signaling with a novel anti-LPA monoclonal antibody (mAb) is neuroprotective after traumatic brain injury (TBI) if given to injured animals whose blood-brain barrier (BBB) has been compromised. It is hypothesized that the anti-LPA mAb could improve chronic pain initiated by TBI.

View Article and Find Full Text PDF

The ability to locate nerve injury and ensuing neuroinflammation would have tremendous clinical value for improving both the diagnosis and subsequent management of patients suffering from pain, weakness, and other neurologic phenomena associated with peripheral nerve injury. Although several non-invasive techniques exist for assessing the clinical manifestations and morphological aspects of nerve injury, they often fail to provide accurate diagnoses due to limited specificity and/or sensitivity. Herein, we describe a new imaging strategy for visualizing a molecular biomarker of nerve injury/neuroinflammation, , the sigma-1 receptor (S1R), in a rat model of nerve injury and neuropathic pain.

View Article and Find Full Text PDF

Background: Nociception is maintained by genome-wide regulation of transcription in the dorsal root ganglia—spinal cord network. Hence, transcription factors constitute a promising class of targets for breakthrough pharmacological interventions to treat chronic pain. DNA decoys are oligonucleotides and specific inhibitors of transcription factor activities.

View Article and Find Full Text PDF

Postincisional hyperalgesia and allodynia play an important role in perioperative medicine. NaV1.7 sodium channel has proven to be a key player in several pain states, including acute, inflammatory, and neuropathic pain.

View Article and Find Full Text PDF

This article reviews material presented at the 2016 Scottsdale Headache Symposium. This presentation provided scientific results and rationale for the use of intranasal oxytocin for the treatment of migraine headache. Results from preclinical experiments are reviewed, including in vitro experiments demonstrating that trigeminal ganglia neurons possess oxytocin receptors and are inhibited by oxytocin.

View Article and Find Full Text PDF

Background AYX1 is an unmodified DNA-decoy designed to reduce acute post-surgical pain and its chronification with a single intrathecal dose at the time of surgery. AYX1 inhibits the transcription factor early growth response protein 1, which is transiently induced at the time of injury and triggers gene regulation in the dorsal root ganglia and spinal cord that leads to long-term sensitization and pain. This work characterizes the AYX1 dose-response profile in rats and the link to AYX1 pharmacokinetics and metabolism in the cerebrospinal fluid, dorsal root ganglia, and spinal cord.

View Article and Find Full Text PDF

Aims: Our studies investigated the location of oxytocin receptors in the peripheral trigeminal sensory system and determined their role in trigeminal pain.

Methods: Oxytocin receptor expression and co-localization with calcitonin gene-related peptide was investigated in rat trigeminal ganglion using immunohistochemistry. Enzyme-linked immunosorbent assay was used to determine the effects of facial electrocutaneous stimulation and adjuvant-induced inflammation of the temporomandibular joint on oxytocin receptor expression in the trigeminal ganglion.

View Article and Find Full Text PDF

Chronic pain after traumatic brain injury (TBI) is very common, but the mechanisms linking TBI to pain experienced in the periphery have not been described. In this set of studies we examined nociceptive sensitization and changes in spinal cord gene expression using the rat lateral fluid percussion model of mild TBI. We did not identify changes in thermal nociceptive thresholds in rats with mild TBI.

View Article and Find Full Text PDF

The persistence of pain after surgery increases the recovery interval from surgery to a normal quality of life. AYX1 is a DNA-decoy drug candidate designed to prevent post-surgical pain following a single intrathecal injection. Tissue injury causes a transient activation of the transcription factor EGR1 in the dorsal root ganglia-dorsal horn network, which then triggers changes in gene expression that induce neuronal hypersensitivity.

View Article and Find Full Text PDF

Background: Two main classes of peripheral sensory neurons contribute to thermal pain sensitivity: the unmyelinated C fibers and thinly myelinated Aδ fibers. These two fiber types may differentially underlie different clinical pain states and distinctions in the efficacy of analgesic treatments. Methods of differentially testing C and Aδ thermal pain are widely used in animal experimentation, but these methods are not optimal for human volunteer and patient use.

View Article and Find Full Text PDF