Most carbonic anhydrases catalyse the reversible conversion of carbon dioxide to protons and bicarbonate, either as soluble cytosolic enzymes, in or at intracellular organelles, or at the extracellular face of the cell membrane as membrane-anchored proteins. Carbonic anhydrase isoform IX (CA IX), a membrane-bound enzyme with catalytic activity at the extracellular membrane surface, has come to prominence in recent years because of its association with hypoxic tissue, particularly tumours, often indicating poor prognosis. We have evaluated the catalytic activity of CA IX heterologously expressed in Xenopus laevis oocytes by measuring the amplitude and rate of cytosolic pH changes as well as pH changes at the outer membrane surface (pHs ) during addition and removal of 5% CO2 /25 mm HCO3-, and by mass spectrometry.
View Article and Find Full Text PDFThe most aggressive tumour cells, which often reside in hypoxic environments, rely on glycolysis for energy production. Thereby they release vast amounts of lactate and protons via monocarboxylate transporters (MCTs), which exacerbates extracellular acidification and supports the formation of a hostile environment. We have studied the mechanisms of regulated lactate transport in MCF-7 human breast cancer cells.
View Article and Find Full Text PDFProton-coupled monocarboxylate transporters (MCTs) are carriers of high-energy metabolites such as lactate, pyruvate, and ketone bodies and are expressed in most tissues. It has previously been shown that transport activity of MCT1 and MCT4 is enhanced by the cytosolic carbonic anhydrase II (CAII) independent of its catalytic activity. We have now studied the influence of the extracellular, membrane-bound CAIV on transport activity of MCT1/4, heterologously expressed in Xenopus oocytes.
View Article and Find Full Text PDFCarbonic anhydrases (CAs) have not only been identified as ubiquitous enzymes catalyzing the fast reversible hydration of carbon dioxide to generate or consume protons and bicarbonate, but also as intra- and extracellular proteins, which facilitate transport function of many acid/base transporting membrane proteins, coined 'transport metabolon'. Functional interaction between CAs and acid/base transporters, such as chloride/bicarbonate exchanger (AE), sodium-bicarbonate cotransporter (NBC) and sodium/hydrogen exchanger (NHE) has been shown to require both catalytic CA activity as well as direct binding of the enzyme to specific sites on the transporter. In contrast, functional interaction between different CA isoforms and lactate-proton-cotransporting monocarboxylate transporters (MCT) has been found to be isoform-specific and independent of CA catalytic activity, but seems to require an intramolecular proton shuttle within the enzyme.
View Article and Find Full Text PDFSoluble cytosolic carbonic anhydrases (CAs) are well known to participate in pH regulation of the cytoplasm of mammalian cells. Membrane-bound CA isoforms--such as isoforms IV, IX, XII, XIV, and XV--also catalyze the reversible conversion of carbon dioxide to protons and bicarbonate, but at the extracellular face of the cell membrane. When human CA isoform IV was heterologously expressed in Xenopus oocytes, we observed, by measuring H(+) at the outer face of the cell membrane and in the cytosol with ion-selective microelectrodes, not only extracellular catalytic CA activity but also robust intracellular activity.
View Article and Find Full Text PDFThe ubiquitous enzyme carbonic anhydrase isoform II (CAII) has been shown to enhance transport activity of the proton-coupled monocarboxylate transporters MCT1 and MCT4 in a non-catalytic manner. In this study, we investigated the role of cytosolic CAII and of the extracellular, membrane-bound CA isoform IV (CAIV) on the lactate transport activity of the high-affinity monocarboxylate transporter MCT2, heterologously expressed in Xenopus oocytes. In contrast to MCT1 and MCT4, transport activity of MCT2 was not altered by CAII.
View Article and Find Full Text PDFCarbonic anhydrases (CAs) catalyze the reversible hydration of CO(2) to HCO(3)(-) and H(+). The rate-limiting step in this reaction is the shuttle of protons between the catalytic center of the enzyme and the bulk solution. In carbonic anhydrase II (CAII), the fastest and most wide-spread isoform, this H(+) shuttle is facilitated by the side chain of His64, whereas CA isoforms such as carbonic anhydrase III (CAIII), which lack such a shuttle, have only low catalytic activity in vitro.
View Article and Find Full Text PDFMonocarboxylate transporters (MCTs) are carriers of high-energy metabolites like lactate and pyruvate, and different MCT isoforms are expressed in a wide range of cells and tissues. Transport activity of MCT isoform 1 (MCT1), heterologously expressed in Xenopus oocytes, has previously been shown to be supported by carbonic anhydrase II (CAII) in a noncatalytic manner. In the present study, we investigated possible interactions of CAII with MCT4, expressed in Xenopus oocytes.
View Article and Find Full Text PDF