Publications by authors named "Michael Klann"

Newly synthesized membrane proteins are constantly sorted from the endoplasmic reticulum (ER) to various membranous compartments. How proteins specifically enrich at the inner nuclear membrane (INM) is not well understood. We have established a visual in vitro assay to measure kinetics and investigate requirements of protein targeting to the INM.

View Article and Find Full Text PDF

Modeling the spatiotemporal dynamics of biochemical reaction systems at single-molecule resolution has become feasible with the increase of computing power and is applied especially to cellular signal transduction. For an association reaction the two molecules have to be in contact. Hence, a physically faithful model of the molecular interaction assumes non-overlapping molecules that interact at their surfaces (boundary scheme).

View Article and Find Full Text PDF

Motivation: Cellular signal transduction involves spatial-temporal dynamics and often stochastic effects due to the low particle abundance of some molecular species. Others can, however, be of high abundances. Such a system can be simulated either with the spatial Gillespie/Stochastic Simulation Algorithm (SSA) or Brownian/Smoluchowski dynamics if space and stochasticity are important.

View Article and Find Full Text PDF

Cells are highly organized objects containing millions of molecules. Each biomolecule has a specific shape in order to interact with others in the complex machinery. Spatial dynamics emerge in this system on length and time scales which can not yet be modeled with full atomic detail.

View Article and Find Full Text PDF

: In our previous study, we introduced a combination methodology of Fluorescence Correlation Spectroscopy (FCS) and Transmission Electron Microscopy (TEM), which is powerful to investigate the effect of intracellular environment to biochemical reaction processes. Now, we developed a reconstruction method of realistic simulation spaces based on our TEM images. Interactive raytracing visualization of this space allows the perception of the overall 3D structure, which is not directly accessible from 2D TEM images.

View Article and Find Full Text PDF

The membrane trafficking machinery provides a transport and sorting system for many cellular proteins. We propose a mechanistic agent-based computer simulation to integrate and test the hypothesis of vesicle transport embedded into a detailed model cell. The method tracks both the number and location of the vesicles.

View Article and Find Full Text PDF

Background: In this paper we apply a novel agent-based simulation method in order to model intracellular reactions in detail. The simulations are performed within a virtual cytoskeleton enriched with further crowding elements, which allows the analysis of molecular crowding effects on intracellular diffusion and reaction rates. The cytoskeleton network leads to a reduction in the mobility of molecules.

View Article and Find Full Text PDF

Agent-based models are rigorous tools for simulating the interactions of individual entities, such as organisms or molecules within cells and assessing their effects on the dynamic behavior of the system as a whole. In context with bioprocess and biosystems engineering there are several interesting and important applications. This contribution aims at introducing this strategy with the aid of two examples characterized by striking distinctions in the scale of the individual entities and the mode of their interactions.

View Article and Find Full Text PDF

The transduction of signals depends on the translocation of signaling molecules to specific targets. Undirected diffusion processes play a key role in the bridging of spaces between different cellular compartments. The diffusion of the molecules is, in turn, governed by the intracellular architecture.

View Article and Find Full Text PDF