Influential theories of the evolution of cognition and cooperation posit that tracking information about others allows individuals to adjust their social associations strategically, re-shaping social networks to favour connections between compatible partners. Crucially, to our knowledge, this has yet to be tested experimentally in natural populations, where the need to maintain long-term, fitness-enhancing relationships may limit social plasticity. Using a social-network-manipulation experiment, we show that wild jackdaws (Corvus monedula) learned to favour social associations with compatible group members (individuals that provided greater returns from social foraging interactions), but resultant change in network structure was constrained by the preservation of valuable pre-existing relationships.
View Article and Find Full Text PDFHuman cumulative cultural evolution (CCE) is recognized as a powerful ecological and evolutionary force, but its origins are poorly understood. The long-standing view that CCE requires specialized social learning processes such as teaching has recently come under question, and cannot explain why such processes evolved in the first place. An alternative, but largely untested, hypothesis is that these processes gradually coevolved with an increasing reliance on complex tools.
View Article and Find Full Text PDFAcross the animal kingdom, examples abound of individuals coming together to repel external threats. When such collective actions are initiated by recruitment signals, individuals may benefit from being selective in whom they join, so the identity of the initiator may determine the magnitude of the group response. However, the role of signaller discrimination in coordinating group-level responses has yet to be tested.
View Article and Find Full Text PDF