Molecular mechanisms within the checkpoint receptor PD-1 are essential for its activation by PD-L1 as well as for blocking such an activation via checkpoint inhibitors. We use molecular dynamics to scrutinize patterns of atomic motion in PD-1 without a ligand. Molecular dynamics is performed for the whole extracellular domain of PD-1, and the analysis focuses on its CC'-loop and some adjacent C-atoms.
View Article and Find Full Text PDFEvidence theory by Dempster-Shafer for determination of hormone receptor status in breast cancer samples was introduced in our previous paper. One major topic pointed out here is the link between pieces of evidence found from different origins. In this paper the challenge of selecting appropriate ways of fusing evidence, depending on the type and quality of data involved is addressed.
View Article and Find Full Text PDFCells in danger of being erroneously attacked by leucocytes express PD-L1 on their surface. These cells activate PD-1 on attacking leucocytes and send them to death, thus curbing erroneous, autoimmune attack. Unfortunately, cancer cells exploit this mechanism: By expressing PD-L1, they guard themselves against leucocyte attack and thereby evade immune clearance.
View Article and Find Full Text PDFEstrogen and progesterone receptors being present or not represents one of the most important biomarkers for therapy selection in breast cancer patients. Conventional measurement by immunohistochemistry (IHC) involves errors, and numerous attempts have been made to increase precision by additional information from gene expression. This raises the question of how to fuse information, in particular, if there is disagreement.
View Article and Find Full Text PDFGalectin-4 (Gal-4) is a member of the galectin family, which have been identified as galactose-binding proteins. Gal-4 possesses two tandem repeat carbohydrate recognition domains and acts as a cross-linking bridge in sulfatide-dependent glycoprotein routing. We herein document its upregulation in osteoarthritis (OA) in correlation with the extent of cartilage degradation in vivo.
View Article and Find Full Text PDFCorrectly estimating the hormone receptor status for estrogen (ER) and progesterone (PGR) is crucial for precision therapy of breast cancer. It is known that conventional diagnostics (immunohistochemistry, IHC) yields a significant rate of wrongly diagnosed receptor status. Here we demonstrate how Dempster Shafer decision Theory (DST) enhances diagnostic precision by adding information from gene expression.
View Article and Find Full Text PDFThe authors wish to make the following change to their paper [...
View Article and Find Full Text PDFPrecision medicine for breast cancer relies on biomarkers to select therapies. However, the reliability of biomarkers drawn from gene expression arrays has been questioned and calls for reassessment, in particular for large datasets. We revisit widely used data-normalization procedures and evaluate differences in outcome in order to pinpoint the most reliable reprocessing methods biomarkers can be based upon.
View Article and Find Full Text PDFAF1q impairs survival in hematologic and solid malignancies. AF1q expression is associated with tumor progression, migration, and chemoresistance, and acts as a transcriptional co-activator in WNT and STAT signaling. This study evaluates the role of AF1q in patients with resectable esophageal cancer (EC).
View Article and Find Full Text PDFPurpose: Therapeutic decisions in breast cancer patients crucially depend on the status of estrogen receptor, progesterone receptor and HER2, obtained by immunohistochemistry (IHC). These are known to be inaccurate sometimes, and we demonstrate how to use gene-expression to increase precision of receptor status.
Methods: We downloaded data from 3241 breast cancer patients out of 36 clinical studies.
The reading of glycan-encoded signals by tissue lectins is considered a major route of the flow of biological information in many (patho)physiological processes. The arising challenge for current research is to proceed from work on a distinct protein to family-wide testing of lectin function. Having previously identified homodimeric galectin-1 and chimera-type galectin-3 as molecular switches in osteoarthritis progression, we here provide proof-of-principle evidence for an intra-network cooperation of galectins with three types of modular architecture.
View Article and Find Full Text PDFImmunohistochemical (IHC) determination of receptor status in breast cancer patients is frequently inaccurate. Since it directs the choice of systemic therapy, it is essential to increase its reliability. We increase the validity of IHC receptor expression by additionally considering gene expression (GE) measurements.
View Article and Find Full Text PDFThe aim of this work is to find semi-rigid domains within large proteins as reference structures for fitting molecular dynamics trajectories. We propose an algorithm, multistage consensus clustering, MCC, based on minimum variation of distances between pairs of Cα-atoms as target function. The whole dataset (trajectory) is split into sub-segments.
View Article and Find Full Text PDFMHC α-helices form the antigen-binding cleft and are of particular interest for immunological reactions. To monitor these helices in molecular dynamics simulations, we applied a parsimonious fragment-fitting method to trace the axes of the α-helices. Each resulting axis was fitted by polynomials in a least-squares sense and the curvature integral was computed.
View Article and Find Full Text PDFDynamic variations in the distances between pairs of atoms are used for clustering subdomains of biomolecules. We draw on a well-known target function for clustering and first show mathematically that the assignment of atoms to clusters has to be crisp, not fuzzy, as hitherto assumed. This reduces the computational load of clustering drastically, and we demonstrate results for several biomolecules relevant in immunoinformatics.
View Article and Find Full Text PDF