Conjuring up our thoughts, language reflects statistical patterns of word co-occurrences which in turn come to describe how we perceive the world. Whether counting how frequently nouns and verbs combine in Google search queries, or extracting eigenvectors from term document matrices made up of Wikipedia lines and Shakespeare plots, the resulting latent semantics capture not only the associative links which form concepts, but also spatial dimensions embedded within the surface structure of language. As both the shape and movements of objects have been found to be associated with phonetic contrasts already in toddlers, this study explores whether articulatory and acoustic parameters may likewise differentiate the latent semantics of action verbs.
View Article and Find Full Text PDFCombining low-cost wireless EEG sensors with smartphones offers novel opportunities for mobile brain imaging in an everyday context. Here we present the technical details and validation of a framework for building multi-platform, portable EEG applications with real-time 3D source reconstruction. The system--Smartphone Brain Scanner--combines an off-the-shelf neuroheadset or EEG cap with a smartphone or tablet, and as such represents the first fully portable system for real-time 3D EEG imaging.
View Article and Find Full Text PDFMobile brain imaging solutions, such as the Smartphone Brain Scanner, which combines low cost wireless EEG sensors with open source software for real-time neuroimaging, may transform neuroscience experimental paradigms. Normally subject to the physical constraints in labs, neuroscience experimental paradigms can be transformed into dynamic environments allowing for the capturing of brain signals in everyday contexts. Using smartphones or tablets to access text or images may enable experimental design capable of tracing emotional responses when shopping or consuming media, incorporating sensorimotor responses reflecting our actions into brain machine interfaces, and facilitating neurofeedback training over extended periods.
View Article and Find Full Text PDFEEG source reconstruction involves solving an inverse problem that is highly ill-posed and dependent on a generally fixed forward propagation model. In this contribution we compare a low and high density EEG setup's dependence on correct forward modeling. Specifically, we examine how different forward models affect the source estimates obtained using four inverse solvers Minimum-Norm, LORETA, Minimum-Variance Adaptive Beamformer, and Sparse Bayesian Learning.
View Article and Find Full Text PDF