Publications by authors named "Michael Kahnert"

We investigate the optical properties of marine aerosol in dependence of the water content. To this end we develop a model geometry that realistically mimics the morphological changes as the salt particles take up more water. The results are compared to morphologically simpler models, namely, homogeneous and inhomogeneous superellipsoids, as well as cube-sphere hybrids.

View Article and Find Full Text PDF

Aerosol optics models are an integral part of of climate models and of retrieval methods for global remote sensing observations. Such large-scale environmental applications place tight constraints on the affordable model complexity, which are difficult to reconcile with the considerable level of detail that is needed to capture the sensitivity of optical properties to morphological aerosol characteristics. Here, we develop a novel core-grey-shell dimer model and demonstrate its potential for reproducing radiometric and polarimetric properties of black carbon aerosols.

View Article and Find Full Text PDF

Among the various methods for computing the T-matrix in electromagnetic and acoustic scattering problems is an iterative approach that has been shown to be particularly suited for particles with small-scale surface roughness. This method is based on an implicit T-matrix equation. However, the convergence properties of this method are not well understood.

View Article and Find Full Text PDF

The impact of multiple scattering (MS) by aerosols on satellite-borne lidar measurements is studied by Monte-Carlo radiative transfer simulations. A total of 48 aerosol scenarios are considered. We find that the frequently used MS correction factor can be parameterized as a function of aerosol size and aerosol optical depth.

View Article and Find Full Text PDF

The optical properties of thickly coated soot particles are sensitive to the chemical composition, thus to the refractive index of the coating material. For 58 differently sized coated soot aggregates the extinction-to-backscatter ratio (lidar ratio) and the depolarisation ratio are computed at a wavelength of 355 nm, 532 nm and 1064 nm for two different coating materials: a toluene-based coating and a sulphate coating. Additionally the Ångström exponents between 355 nm and 532 nm as well as between 532 nm and 1064 nm are calculated.

View Article and Find Full Text PDF

At 532 nm wavelength, optical properties of black carbon (BC) particles mixed with sulfate are computed by use of two morphological models, a closed cell and a coated aggregate model. For high BC volume fractions f, both models yield comparable results. As more sulfate is added, some of the optical properties diverge.

View Article and Find Full Text PDF

Optical properties of light absorbing carbon (LAC) aggregates encapsulated in a shell of sulfate are computed for realistic model geometries based on field measurements. Computations are performed for wavelengths from the UV-C to the mid-IR. Both climate- and remote sensing-relevant optical properties are considered.

View Article and Find Full Text PDF

The fulfillment of the reciprocity by five publicly available scattering programs is investigated for a number of different particles. Reciprocity means that the source and the observation point of a given scattering configuration can be interchanged without changing the result. The programs under consideration are either implementations of T-matrix methods or of the discrete dipole approximation.

View Article and Find Full Text PDF

Light scattering by light absorbing carbon (LAC) aggregates encapsulated into sulfate shells is computed by use of the discrete dipole method. Computations are performed for a UV, visible, and IR wavelength, different particle sizes, and volume fractions. Reference computations are compared to three classes of simplified model particles that have been proposed for climate modeling purposes.

View Article and Find Full Text PDF

A T-matrix method for scattering by particles with small-scale surface roughness is presented. The method combines group theory with a perturbation expansion approach. Group theory is found to reduce CPU-time by 4-6 orders of magnitude.

View Article and Find Full Text PDF

For particles with discrete geometrical symmetries, a group-theoretical method is presented for transforming the matrix quantities in the T-matrix description of the electromagnetic scattering problem from the reducible basis of vector spherical wave functions into a new basis in which all matrix quantities become block diagonal. The notorious ill-conditioning problems in the inversion of the Q matrix are thus considerably alleviated, and the matrix inversion becomes numerically more expedient. The method can be applied to any point group.

View Article and Find Full Text PDF

The European Monitoring and Evaluation Programme (EMEP) has been established to provide information to Parties to the Convention on Long Range Transboundary Air Pollution on deposition and concentration of air pollutants, as well as on the quantity and significance of long-range transmission of pollutants and transboundary fluxes. To achieve its objectives with the required scientific credibility and technical underpinning, a close integration of the programme's main elements is performed. These elements are emission inventories, chemical transport modelling, and the monitoring of atmospheric chemistry and deposition fluxes, which further are integrated towards abatement policy development.

View Article and Find Full Text PDF

We compute the scalar optical properties of size-shape distributions of wavelength-sized randomly oriented homogeneous particles with different nonaxially symmetric geometries and investigate how well they can be modeled with a simple spherical, spheroidal, or cylindrical particle model. We find that a spherical particle model can be used to determine the extinction and scattering cross sections, the single-scattering albedo, and the asymmetry parameter with an error of less than 2%, whereas the extinction-to-backscatter ratio Reb is reproduced only with an error of 9%. The cylindrical and spheroidal particle models yield slightly improved results for Reb that deviate from those obtained for the complex particle ensemble by 7% and 5%, respectively.

View Article and Find Full Text PDF