J Neuropathol Exp Neurol
January 2022
In Canada, 42 929 people were involved in fatal motor vehicle collisions (MVCs) between 1999 and 2018. Traumatic brain injuries (TBIs), including diffuse vascular injury (DVI), were the most frequent cause of death. The neuroanatomical injury pattern and severity of DVI in relation to data on MVC dynamics and other MVC factors were the focus of the current study.
View Article and Find Full Text PDFPannexin1 (Panx1) subunits oligomerize to form large-pore channels between the intracellular and extracellular milieu that have been shown to regulate proliferation, differentiation and cell death mechanisms. These key cellular responses are ultimately necessary for normal tissue development and function but the role of Panx1 in development, differentiation and function in many tissues remains unexplored, including that of the breast. Panx1 was identified to be expressed in the mammary gland through western blot and immunofluorescent analysis and is dynamically upregulated during pregnancy and lactation.
View Article and Find Full Text PDFDown-regulation of the gap junction protein connexin26 (Cx26) is an early event following breast cancer onset and has led to Cx26 being classically described as a tumor suppressor. Interestingly, mutations in theCx26 gene (GJB2) reduce or ablate Cx26 gap junction channel function and are the most common cause of genetic deafness. It is unknown if patients with loss-of-function GJB2 mutations have a greater susceptibility to breast tumorigenesis or aggressive breast cancer progression.
View Article and Find Full Text PDFGap junctions formed of connexin subunits link adjacent cells by direct intercellular communication that is essential for normal tissue homeostasis in the mammary gland. The mammary gland undergoes immense remodeling and requires exquisite regulation to control the proliferative, differentiating, and cell death mechanisms regulating gland development and function. The generation of novel genetically modified mice with reduced or ablated connexin function within the mammary gland has advanced our understanding of the role of gap junctions during the complex and dynamic process of mammary gland development.
View Article and Find Full Text PDFConnexin26 (Cx26) is the major Cx protein expressed in the human mammary gland and is up-regulated during pregnancy while remaining elevated throughout lactation. It is currently unknown if patients with loss-of-function Cx26 mutations that result in hearing loss and skin diseases have a greater susceptibility to impaired breast development. To investigate if Cx26 plays a critical role in mammary gland development and differentiation, a novel Cx26 conditional knockout mouse model was generated by crossing Cx26fl/fl mice with mice expressing Cre under the β-Lactoglobulin promoter.
View Article and Find Full Text PDFGenetically modified mice mimicking ODDD (oculodentodigital dysplasia), a disease characterized by reduced Cx43 (connexin 43)-mediated gap junctional intercellular communication, represent an in vivo model to assess the role of Cx43 in mammary gland development and function. We previously reported that severely compromised Cx43 function delayed mammary gland development and impaired milk ejection in mice that harboured a G60S Cx43 mutant, yet there are no reports of lactation defects in ODDD patients. To address this further, we obtained a second mouse model of ODDD expressing an I130T Cx43 mutant to assess whether a mutant with partial gap junction channel activity would be sufficient to retain mammary gland development and function.
View Article and Find Full Text PDFThe human mammary gland is composed of 15-20 lobes that secrete milk into a branching duct system opening at the nipple. Those lobes are themselves composed of a number of terminal duct lobular units made of secretory alveoli and converging ducts. In mice, a similar architecture is observed at pregnancy in which ducts and alveoli are interspersed within the connective tissue stroma.
View Article and Find Full Text PDF