Introduction: Fluid responsiveness prediction is difficult in spontaneously breathing patients. Because the swings in intrathoracic pressure are minor during spontaneous breathing, dynamic parameters like pulse pressure variation (PPV) and systolic pressure variation (SPV) are usually small. We hypothesized that during spontaneous breathing, inspiratory and/or expiratory resistors could induce high arterial pressure variations at hypovolemia and low variations at normovolemia and hypervolemia.
View Article and Find Full Text PDFIntroduction: Correct use of prehospital medical competence requires optimal dispatch. Based on the severity gauge Severity of Injury/Illness Index (SIII) which grades injury/illness into eight levels, we examined the effect of implementing new dispatch and guidance instructions in the emergency call centre.
Materials And Methods: From the local Prehospital Database we have withdrawn data from 1st August 2000 to 31st December 2005.
Introduction: To fulfil the increasing requirements for documentation and quality assurance, amPHI, an ambulance on-line record-keeping system has been developed. We present the data from the pilot study to access how often ambulance crews use their skills.
Materials And Methods: As a pilot study amPHI was installed and tested in an emergency ambulance for 21 months.
Bacillus subtilis can utilize maltose and maltodextrins that are derived from polysaccharides, like starch or glycogen. In this work, we show that maltose is taken up by a member of the phosphoenolpyruvate-dependent phosphotransferase system and maltodextrins are taken up by a maltodextrin-specific ABC transporter. Uptake of maltose by the phosphoenolpyruvate-dependent phosphotransferase system is mediated by maltose-specific enzyme IICB (MalP; synonym, GlvC), with an apparent K(m) of 5 microM and a V(max) of 91 nmol .
View Article and Find Full Text PDFBackground: The Bacillus subtilis glucokinase operon was predicted to be comprised of the genes, yqgP (now named gluP), yqgQ, and glcK. We have previously established a role for glcK in glucose metabolism. In the absence of enzymes that phosphorylate glucose, such as GlcK and/or enzyme IIGlc, accumulated cytoplasmic glucose can be transported out of the cell.
View Article and Find Full Text PDFBackground: Bacillus subtilis glucokinase (GlcK) (GenBank NP_390365) is an ATP-dependent kinase that phosphorylates glucose to glucose 6-phosphate. The GlcK protein has very low sequence identity (13.7%) to the Escherichia coli glucokinase (Glk) (GenBank P46880) and some other glucokinases (EC 2.
View Article and Find Full Text PDFJ Mol Microbiol Biotechnol
May 2002
The past decade has witnessed an exiting unveiling of numerous molecular mechanisms that characterize signal transduction by protein-protein interaction. The recent findings encouraged an increasing effort to understand the sequential metabolism of different sugars available as energy sources at the same time. It seems probable that at least three principle mechanisms which act together or separately, mediate carbon catabolite repression (CCR) depending on the system which is under metabolic control: i) by the main signal transducing chain via the ATP-dependent HPr-kinase, HPr(Ser46-P) or alternatively Crh via the central component CcpA and its interaction with cre, ii) by signals sensed from the specific regulators directly or via phosphorylation by HPr, iii) by inducer exclusion based on the concurrence of the enzyme IIA(Glc) domain of the glucose permease, and other PTS-dependent permeases composed only of the B and C domains and lacking the enzyme IIA domain.
View Article and Find Full Text PDF