After antigenic activation, quiescent naive CD4 T cells alter their metabolism to proliferate. This metabolic shift increases production of nucleotides, amino acids, fatty acids, and sterols. Here, we show that histone deacetylase 3 (HDAC3) is critical for activation of murine peripheral CD4 T cells.
View Article and Find Full Text PDFIron-sulfur (Fe-S) clusters are cofactors essential for the activity of numerous enzymes including DNA polymerases, helicases, and glycosylases. They are synthesized in the mitochondria as Fe-S intermediates and are exported to the cytoplasm for maturation by the mitochondrial transporter ABCB7. Here, we demonstrate that ABCB7 is required for bone marrow B cell development, proliferation, and class switch recombination, but is dispensable for peripheral B cell homeostasis in mice.
View Article and Find Full Text PDFNKAP is a multi-functional nuclear protein that has been shown to be essential for hematopoiesis. Deletion of NKAP in hematopoietic stem cells (HSCs) was previously found to result in rapid lethality and hematopoietic failure. NKAP deficient cells also exhibited diminished proliferation and increased expression of the cyclin dependent kinase inhibitors (CDKIs) p19 Ink4d and p21 Cip1.
View Article and Find Full Text PDFNKAP is a multifunctional nuclear protein that associates with the histone deacetylase HDAC3. Although both NKAP and HDAC3 are critical for hematopoietic stem cell (HSC) maintenance and survival, it was not known whether these two proteins work together. To assess the importance of their association in vivo, serial truncation and alanine scanning was performed on NKAP to identify the minimal binding site for HDAC3.
View Article and Find Full Text PDF