Objective: To investigate how the expansion trajectory of a lateral expandable cage affects pressure distribution at the cage-endplate interface under well-controlled biomechanical loading conditions.
Methods: Three unique vertical height expansion trajectories used by clinically relevant lateral expandable cages were evaluated: craniocaudal, fixed-arc, and independently adjustable anterior and posterior height expansion. Two biomechanical loading scenarios were performed.
Background: Cage subsidence remains a major complication after spinal surgery. The goal of this study was to compare the subsidence performance of three modern porous cage designs.
Methods: Three porous cages were evaluated: a porous titanium cage, a porous polyetheretherketone cage and a truss titanium cage.
Objective: The objective of the study was to quantify the effect of cage material (titanium-alloy vs. polyetheretherketone or PEEK) and design (porous vs. solid) on subsidence and osseointegration.
View Article and Find Full Text PDFBackground Context: Cage subsidence remains a serious complication after spinal fusion surgery. Novel porous designs in the cage body or endplate offer attractive options to improve subsidence and osseointegration performance.
Purpose: To elucidate the relative contribution of a porous design in each of the two major domains (body and endplates) to cage stiffness and subsidence performance, using standardized mechanical testing methods, and to analyze the fusion progression via an established ovine interbody fusion model to support the mechanical testing findings.
Purpose: The biomechanical performance of conventional multi-rod configurations (satellite rods and accessory rods) in pedicle subtraction osteotomies has been previously studied in vitro and using finite element models (FEM). Delta and delta-cross rods are innovative multi-rod configurations where the rod bends were placed only in its proximal and distal extremities in order to obtain a dorsal translation of the central part of the rod respect to the most angulated area of the main rods. However, the biomechanical properties of the delta and delta-cross rods have not been investigated.
View Article and Find Full Text PDFThe mechanism of vertebral wedge fractures remains unclear and may relate to typical variations in the mechanical behavior of the intervertebral disc. To gain insight, we tested 16 individual whole discs (between levels T8 and L5) from nine cadavers (mean±SD: 66±16 years), loaded in compression at different rates (0.05-20.
View Article and Find Full Text PDFThe mechanisms of age-related vertebral fragility remain unclear, but may be related to the degree of "structural redundancy" of the vertebra; ie, its ability to safely redistribute stress internally after local trabecular failure from an isolated mechanical overload. To better understand this issue, we performed biomechanical testing and nonlinear micro-CT-based finite element analysis on 12 elderly human thoracic ninth vertebral bodies (age 76.9 ± 10.
View Article and Find Full Text PDFVertebral strength, as estimated by finite element analysis of computed tomography (CT) scans, has not yet been compared against areal bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA) for prospectively assessing the risk of new clinical vertebral fractures. To do so, we conducted a case-cohort analysis of 306 men aged 65 years and older, which included 63 men who developed new clinically-identified vertebral fractures and 243 men who did not, all observed over an average of 6.5 years.
View Article and Find Full Text PDFVertebral strength, a key etiologic factor of osteoporotic fracture, may be affected by the relative amount of vertically oriented trabeculae. To better understand this issue, we performed experimental compression testing, high-resolution micro-computed tomography (µCT), and micro-finite-element analysis on 16 elderly human thoracic ninth (T(9)) whole vertebral bodies (ages 77.5 ± 10.
View Article and Find Full Text PDFThe intra-specimen spatial variation in mineralization of bone tissue can be changed by drug treatments that alter bone remodeling. However, the contribution of such changes to the overall biomechanical effect of a treatment on bone strength is not known. To provide insight into this issue, we used a rat model to determine the effects of ovariectomy, parathyroid hormone, and raloxifene (vs.
View Article and Find Full Text PDFThe role of trabecular microarchitecture in whole-vertebral biomechanical behavior remains unclear, and its influence may be obscured by such factors as overall bone mass, bone geometry, and the presence of the cortical shell. To address this issue, 22 human T(9) vertebral bodies (11 female; 11 male; age range: 53-97 yr, 81.5 +/- 9.
View Article and Find Full Text PDFJ Biomech Eng
January 2009
Bone formation occurs in vivo in response to mechanical stimuli, but the signaling pathways involved remain unclear. The ability of bone cells to communicate with each other in the presence of an applied load may influence the overall osteogenic response. The goal of this research was to determine whether inhibiting cell-to-cell gap junctional communication between bone-forming cells would affect the ensemble cell response to an applied mechanical stimulus in vitro.
View Article and Find Full Text PDF