We present an investigation into the vertical transport through 13 different superlattice structures, where the well and barrier widths, doping concentration, dopant position, and contact layers were varied. Although superlattices have been extensively studied since 1970, there is a lack of publications on transport through superlattices similarly low doped as THz quantum cascade lasers (QCLs), for which the doping is in the 3-5×10^{10} cm^{-2} range. The superlattices presented are doped in the same range as THz QCLs, with contact layers and fabrication comparable to high-temperature THz QCLs.
View Article and Find Full Text PDFWe report on a flexible platform for molecular sensing in the terahertz range. Merging the well-established technologies of near-infrared electro-optic modulation and photomixing realizes a spectrally adaptable terahertz source, which is combined with a new generation of compact gas cells, so-called substrate-integrated hollow waveguides (iHWGs). iHWGs have been developed in the mid-infrared and provide flexibility in the design of the optical absorption path.
View Article and Find Full Text PDFBroadband emission in the terahertz spectral region is a prerequisite for applications such as spectroscopy or white light sources. Appropriate signal powers and a compact design are advantageous for this use. A technology which meets these requirements are terahertz quantum cascade lasers.
View Article and Find Full Text PDFWe demonstrate a terahertz (THz) frequency comb that is flexible in terms of its frequency range and the number and spacing of comb lines. We use a combination of near-infrared laser diodes, phase modulation, and opto-electronic frequency conversion. The THz comb lines are characterized to be <10 by resolving the pressure-dependent collisional broadening of an ammonia molecule rotational mode.
View Article and Find Full Text PDF