Background: Opsins are light sensitive receptors associated with visual processes. Insects typically possess opsins that are stimulated by ultraviolet, short and long wavelength (LW) radiation. Six putative LW-sensitive opsins predicted in the yellow fever mosquito, Aedes aegypti and malaria mosquito, Anopheles gambiae, and eight in the southern house mosquito, Culex quinquefasciatus, suggest gene expansion in the Family Culicidae (mosquitoes) relative to other insects.
View Article and Find Full Text PDFGene duplication is a major driving force in genome evolution. Here, we explore the nature and origin of the POT1 gene duplication in Arabidopsis thaliana. Protection of Telomeres (POT1) is a conserved multifunctional protein that modulates telomerase activity and its engagement with telomeres.
View Article and Find Full Text PDFPremise Of The Study: Complete chloroplast genome studies can help resolve relationships among large, complex plant lineages such as Asteraceae. We present the first whole plastome from the Madieae tribe and compare its sequence variation to other chloroplast genomes in Asteraceae.
Methods: We used high throughput sequencing to obtain the Lasthenia burkei chloroplast genome.
Background: Members of the cation diffusion facilitator (CDF) family are integral membrane divalent cation transporters that transport metal ions out of the cytoplasm either into the extracellular space or into internal compartments such as the vacuole. The spectrum of cations known to be transported by proteins of the CDF family include Zn, Fe, Co, Cd, and Mn. Members of this family have been identified in prokaryotes, eukaryotes, and archaea, and in sequenced plant genomes.
View Article and Find Full Text PDFStudies of flower development in core eudicot species have established a central role for B class MADS-box genes in specifying petal and stamen identities. Similarly in maize and rice, B class genes are essential for lodicule and stamen specification, suggesting homology of petals and lodicules and conservation of B class gene activity across angiosperms. However, lodicules are grass-specific organs with a morphology distinct from petals, thus their true homology to eudicot and nongrass monocot floral organs has been a topic of debate.
View Article and Find Full Text PDFBased on analyses of combined data sets of three genes (18S rDNA, rbcL, and atpB), phylogenetic relationships among the early-diverging eudicot lineages (Ranunculales, Proteales, Trochodendraceae, Sabiaceae, and Buxaceae) remain unclear, as are relationships within Ranunculales, especially the placement of Eupteleaceae. To clarify relationships among these early-diverging eudicot lineages, we added entire sequences of 26S rDNA to the existing three-gene data set. In the combined analyses of four genes based on parsimony, ML, and Bayesian analysis, Ranunculales are strongly supported as a clade and are sister to other eudicots.
View Article and Find Full Text PDFPhylogenetic relationships among many lineages of angiosperms have been clarified via the analysis of large molecular data sets. However, with a data set of three genes (18S rDNA, rbcL, and atpB), relationships among lineages of core eudicots (Berberidopsidales, Caryophyllales, Gunnerales, Santalales, Saxifragales, asterids, rosids) remain essentially unresolved. We added 26S rDNA sequences to a three-gene matrix for 201 eudicots (8430 base pair aligned nucleotides per taxon).
View Article and Find Full Text PDFRelationships among the five groups of extant seed plants (cycads, Ginkgo, conifers, Gnetales, and angiosperms) remain uncertain. To explore relationships among groups of extant seed plants further and to attempt to explain the conflict among molecular data sets, we assembled a data set of four plastid (cpDNA) genes (rbcL, atpB, psaA, and psbB), three mitochondrial (mtDNA) genes (mtSSU, coxI, and atpA), and one nuclear gene (18S rDNA) for 19 exemplars representing the five groups of living seed plants. Analyses of the combined eight-gene data set (15 772 base pairs/taxon) with maximum parsimony (MP), maximum likelihood (ML), and Bayesian approaches reveal a gymnosperm clade that is sister to angiosperms.
View Article and Find Full Text PDFMost recent phylogenetic analyses of basal angiosperms have converged on the placement of Amborella as sister to all other extant angiosperms. However, certain recent studies suggest that Amborella and Nymphaeales (water lilies) form a clade sister to all remaining angiosperms or that Nymphaeales alone are the sister to the remaining angiosperms. We report here (i) maximum parsimony, maximum likelihood, and Bayesian phylogenetic analyses of 11 genes (>15,000 bp per taxon) for 16 taxa, (ii) maximum parsimony analysis for a subset of these genes for 104 taxa, and (iii) tests of alternative rootings with the nonparametric bootstrap and the likelihood ratio test with the parametric bootstrap.
View Article and Find Full Text PDF