Publications by authors named "Michael J Wichroski"

Article Synopsis
  • - Immune checkpoint blockade (ICB) has shown promise for treating various cancers, but reliable biomarkers to predict patient responses are lacking, often failing in larger trials despite initial success from smaller studies.
  • - Research indicates that T cell receptor (TCR) clonality is not a reliable predictor of response to ICB therapies, as analyses of tumor infiltrating lymphocytes reveal specific transcriptomic features associated with successful treatment in mice.
  • - A CD8 T cell gene signature was developed through single-cell transcriptomics that correlates with improved overall survival in patients treated with nivolumab for metastatic melanoma, emphasizing the importance of single-cell assays for identifying effective biomarkers.
View Article and Find Full Text PDF

Immune clearance of Hepatitis B virus (HBV) is characterized by broad and robust antiviral T cell responses, while virus-specific T cells in chronic hepatitis B (CHB) are rare and exhibit immune exhaustion that includes programmed-death-1 (PD-1) expression on virus-specific T cells. Thus, an immunotherapy able to expand and activate virus-specific T cells may have therapeutic benefit for CHB patients. Like HBV-infected patients, woodchucks infected with woodchuck hepatitis virus (WHV) can have increased hepatic expression of PD-1-ligand-1 (PD-L1), increased PD-1 on CD8+ T cells, and a limited number of virus-specific T cells with substantial individual variation in these parameters.

View Article and Find Full Text PDF

The recent development of a Hepatitis C virus (HCV) infectious virus cell culture model system has facilitated the development of whole-virus screening assays which can be used to interrogate the entire virus life cycle. Here, we describe the development of an HCV growth assay capable of identifying inhibitors against all stages of the virus life cycle with assay throughput suitable for rapid screening of large-scale chemical libraries. Novel features include, 1) the use of an efficiently-spreading, full-length, intergenotypic chimeric reporter virus with genotype 1 structural proteins, 2) a homogenous assay format compatible with miniaturization and automated liquid-handling, and 3) flexible assay end-points using either chemiluminescence (high-throughput screening) or Cellomics ArrayScan™ technology (high-content screening).

View Article and Find Full Text PDF

Small molecule inhibitors of hepatitis C virus (HCV) are being developed to complement or replace treatments with pegylated interferons and ribavirin, which have poor response rates and significant side effects. Resistance to these inhibitors emerges rapidly in the clinic, suggesting that successful therapy will involve combination therapy with multiple inhibitors of different targets. The entry process of HCV into hepatocytes represents another series of potential targets for therapeutic intervention, involving viral structural proteins that have not been extensively explored due to experimental limitations.

View Article and Find Full Text PDF

Amino acid substitutions that confer reduced susceptibility to antivirals arise spontaneously through error-prone viral polymerases and are selected as a result of antiviral therapy. Resistance substitutions first emerge in a fraction of the circulating virus population, below the limit of detection by nucleotide sequencing of either the population or limited sets of cloned isolates. These variants can expand under drug pressure to dominate the circulating virus population.

View Article and Find Full Text PDF

Unlabelled: Patients with chronic hepatitis B virus (HBV) infection who develop antiviral resistance lose benefits of therapy and may be predisposed to further resistance. Entecavir (ETV) resistance (ETVr) results from HBV reverse transcriptase substitutions at positions T184, S202, or M250, which emerge in the presence of lamivudine (LVD) resistance substitutions M204I/V +/- L180M. Here, we summarize results from comprehensive resistance monitoring of patients with HBV who were continuously treated with ETV for up to 5 years.

View Article and Find Full Text PDF

APOBEC3G is an antiviral host factor capable of inhibiting the replication of both exogenous and endogenous retroviruses as well as hepatitis B, a DNA virus that replicates through an RNA intermediate. To gain insight into the mechanism whereby APOBEC3G restricts retroviral replication, we investigated the subcellular localization of the protein. Herein, we report that APOBEC3G localizes to mRNA processing (P) bodies, cytoplasmic compartments involved in the degradation and storage of nontranslating mRNAs.

View Article and Find Full Text PDF

To study how HIV-1 viral infectivity factor (Vif) mediates proteasome-dependent depletion of host factor APOBEC3G, functional and nonfunctional Vif-APOBEC3G interactions were correlated with subcellular localization. APOBEC3G localized throughout the cytoplasm and co-localized with gamma-tubulin, 20 S proteasome subunit, and ubiquitin at punctate cytoplasmic bodies that can be used to monitor the Vif-APOBEC3G interaction in the cell. Through immunostaining and live imaging, we showed that a substantial fraction of Vif localized to the nucleus, and this localization was impaired by deletion of amino acids 12-23.

View Article and Find Full Text PDF

The PIGA gene from Toxoplasma gondii has been cloned and characterized. Like mammalian PIGA, the transmembrane and C-terminal domains are sufficient to direct localization to the parasite endoplasmic reticulum. A functional copy of PIGA is required for tachyzoite viability, demonstrating that glycosylphosphatidylinositol biosynthesis is an essential process in T.

View Article and Find Full Text PDF

As is the case with many other protozoan parasites, glycosylphosphatidylinositol (GPI)-anchored proteins dominate the surface of Toxoplasma gondii tachyzoites. The mechanisms by which T. gondii GPI-anchored proteins are synthesized and transported through the unusual triple-membrane structure of the parasite pellicle to the plasma membrane remain largely unknown.

View Article and Find Full Text PDF