Publications by authors named "Michael J Weber"

Targeted therapies such as venetoclax (VEN) (Bcl-2 inhibitor) have revolutionized the treatment of chronic lymphocytic leukemia (CLL). We previously reported that persister CLL cells in treated patients overexpress multiple antiapoptotic proteins and display resistance to proapoptotic agents. Here, we demonstrated that multidrug-resistant CLL cells in vivo exhibited apoptosis restriction at a pre-mitochondrial level due to insufficient activation of the Bax and Bak (Bax/Bak) proteins.

View Article and Find Full Text PDF

The collection of fish eggs is a commonly used technique for monitoring invasive carp. Genetic identification is the most trusted method for identifying fish eggs but is expensive and slow. Recent work suggests random forest models could provide an inexpensive method for identifying invasive carp eggs based on morphometric egg characteristics.

View Article and Find Full Text PDF

Mercury contamination in aquatic ecosystems is a global concern due to the health risks of consuming contaminated fishes. Fish mercury concentrations are influenced by a range of biotic and abiotic factors that vary among regions, but these complex interactions are difficult to disentangle. We collected bluegill (Lepomis macrochirus), white and black crappie (Pomoxis annularis; P.

View Article and Find Full Text PDF

The Bcl-2 inhibitor venetoclax has yielded exceptional clinical responses in chronic lymphocytic leukemia (CLL). However, de novo resistance can result in failure to achieve negative minimal residual disease and predicts poor treatment outcomes. Consequently, additional proapoptotic drugs, such as inhibitors of Mcl-1 and Bcl-xL, are in development.

View Article and Find Full Text PDF

Identifying waterbodies where fish methylmercury concentrations are elevated is critical for development of consumption guidelines. However, mercury concentrations vary among waterbodies and fishes due to a suite of environmental conditions and detection of elevated mercury concentrations is imperfect, resulting in inaccurate consumption guidelines. Occupancy models may be a useful approach for addressing these issues but have not been used for these purposes.

View Article and Find Full Text PDF

Fish mercury concentrations have received considerable attention due to human health implications. Fish mercury concentrations are variable within and among systems due to a suite of biotic and abiotic influences that vary among regions and are difficult to predict. Understanding factors associated with variability in fish mercury concentrations would help guide consumption advisories.

View Article and Find Full Text PDF

Mercury contamination in aquatic ecosystems is a concern due to health risks of consuming fish. Fish mercury concentrations are highly variable and influenced by a range of environmental factors. However, seasonal variation in mercury levels are typically overlooked when monitoring fish mercury concentrations, establishing consumption advisories, or creating accumulation models.

View Article and Find Full Text PDF

resistance and rapid recurrence often characterize responses of B-cell malignancies to ibrutinib (IBR), indicating a need to develop drug combinations that block compensatory survival signaling and give deeper, more durable responses. To identify such combinations, we previously performed a combinatorial drug screen and identified the Bcl-2 inhibitor venetoclax (VEN) as a promising partner for combination with IBR in Mantle Cell Lymphoma (MCL). We have opened a multi-institutional clinical trial to test this combination.

View Article and Find Full Text PDF
Article Synopsis
  • * To streamline this process, researchers can start with a smaller subset of compounds and use virtual screening methods to prioritize which additional compounds to test, combining multiple screening techniques for better results.
  • * A new method of combining these prioritizations was tested and showed to retrieve significantly more active compounds compared to using a single approach, improving the efficiency of drug discovery and guiding future screening strategies.
View Article and Find Full Text PDF

The spreading of adhering cells is a morphogenetic process during which cells break spherical or radial symmetry and adopt migratory polarity with spatially segregated protruding cell front and non-protruding cell rear. The organization and regulation of these symmetry-breaking events, which are both complex and stochastic, are not fully understood. Here we show that in radially spreading cells, symmetry breaking commences with the development of discrete non-protruding regions characterized by large but sparse focal adhesions and long peripheral actin bundles.

View Article and Find Full Text PDF

The Melanoma Research Foundation (MRF) has charted a comprehensive assessment of the current state of melanoma research and care. Intensive discussions among members of the MRF Scientific Advisory Council and Breakthrough Consortium, a group that included clinicians and scientists, focused on four thematic areas - diagnosis/early detection, prevention, tumor cell dormancy (including metastasis), and therapy (response and resistance). These discussions extended over the course of 2015 and culminated at the Society of Melanoma Research 2015 International Congress in November.

View Article and Find Full Text PDF

Over half of BRAFV600E melanomas display intrinsic resistance to BRAF inhibitors, in part due to adaptive signaling responses. In this communication we ask whether BRAFV600E melanomas share common adaptive responses to BRAF inhibition that can provide clinically relevant targets for drug combinations. We screened a panel of 12 treatment-naïve BRAFV600E melanoma cell lines with MAP Kinase pathway inhibitors in pairwise combination with 58 signaling inhibitors, assaying for synergistic cytotoxicity.

View Article and Find Full Text PDF

Fifty percent of cutaneous melanomas are driven by activated BRAFV600E, but tumors treated with RAF inhibitors, even when they respond dramatically, rapidly adapt and develop resistance. Thus, there is a pressing need to identify the major mechanisms of intrinsic and adaptive resistance and develop drug combinations that target these resistance mechanisms. In a combinatorial drug screen on a panel of 12 treatment-naïve BRAFV600E mutant melanoma cell lines of varying levels of resistance to mitogen-activated protein kinase (MAPK) pathway inhibition, we identified the combination of PLX4720, a targeted inhibitor of mutated BRaf, and lapatinib, an inhibitor of the ErbB family of receptor tyrosine kinases, as synergistically cytotoxic in the subset of cell lines that displayed the most resistance to PLX4720.

View Article and Find Full Text PDF

Background: In head and neck squamous cell carcinoma (HNSCC), resistance to single-agent targeted therapy may be overcome by co-targeting of compensatory signaling pathways.

Methods: A targeted drug screen with 120 combinations was used on 9 HNSCC cell lines.

Results: Multiple novel drug combinations demonstrated synergistic growth inhibition.

View Article and Find Full Text PDF

Therapies targeting oncogenic drivers rapidly induce compensatory adaptive responses that blunt drug effectiveness, contributing to therapeutic resistance. Adaptive responses are characteristic of robust cell signaling networks, and thus there is increasing interest in drug combinations that co-target the driver and the adaptive response. An alternative approach to co-inhibiting oncogenic and adaptive targets is to identify a critical node where the activities of these targets converge.

View Article and Find Full Text PDF

Purpose: A CTEP-sponsored phase II trial was conducted to evaluate safety and clinical activity of combination therapy with CCI-779 (temsirolimus) and bevacizumab in patients with advanced melanoma.

Experimental Design: Patients with unresectable stage III to IV melanoma were treated intravenously with temsirolimus 25 mg weekly and bevacizumab 10 mg every 2 weeks. Adverse events were recorded using CTCAE v3.

View Article and Find Full Text PDF

Constitutively activated signaling molecules are often the primary drivers of malignancy, and are favored targets for therapeutic intervention. However, the effectiveness of targeted inhibition of cell signaling can be blunted by compensatory signaling which generates adaptive resistance mechanisms and reduces therapeutic responses. Therefore, it is important to identify and target these compensatory pathways with combinations of targeted agents to achieve durable clinical benefit.

View Article and Find Full Text PDF

The establishment of cell polarity is an essential step in the process of cell migration. This process requires precise spatiotemporal coordination of signaling pathways that in most cells create the typical asymmetrical profile of a polarized cell with nucleus located at the cell rear and the microtubule organizing center (MTOC) positioned between the nucleus and the leading edge. During cell polarization, nucleus rearward positioning promotes correct microtubule organizing center localization and thus the establishment of front-rear polarity and directional migration.

View Article and Find Full Text PDF

Recent data show that extracellular signals are transmitted through a network of proteins rather than hierarchical signaling pathways, suggesting that the inhibition of a single component of a canonical pathway is insufficient for the treatment of cancer. The biologic outcome of signaling through a network is inherently more robust and resistant to inhibition of a single network component. In this study, we conducted a functional chemical genetic screen to identify novel interactions between signaling inhibitors that would not be predicted on the basis of our current understanding of signaling networks.

View Article and Find Full Text PDF

Targeted therapies have often given disappointing results when used as single agents in solid tumors, suggesting the importance of devising rational combinations of targeted drugs. We hypothesized that construction of such combinations could be guided by identification of growth and survival pathways whose activity or expression become upregulated in response to single-agent drug treatment. We mapped alterations in signaling pathways assessed by gene array and protein phosphorylation to identify compensatory signal transduction pathways in prostate cancer xenografts treated with a MAP/ERK kinase (MEK) inhibitor PD325901.

View Article and Find Full Text PDF

The phosphoinositide 3-kinase/AKT signaling pathway plays a key role in cancer cell growth, survival, and angiogenesis. Phosphoinositide-dependent protein kinase-1 (PDK1) acts at a focal point in this pathway immediately downstream of phosphoinositide 3-kinase and PTEN, where it phosphorylates numerous AGC kinases. The PDK1 kinase domain has at least three ligand-binding sites: the ATP-binding pocket, the peptide substrate-binding site, and a groove in the N-terminal lobe that binds the C-terminal hydrophobic motif of its kinase substrates.

View Article and Find Full Text PDF

A dynamic, focused screening strategy that utilized a limited but diversified set of target-specific compounds was explored as an efficient means for the identification of inhibitors of the protein kinase PDK1. Approximately 21,500 compounds, including a 19,000 molecule kinase-focused compound collection (KFCC), were screened at two concentrations to identify initial leads. The KFCC included several empirically-derived, general kinase libraries and molecules chosen by PDK1-specific virtual screens.

View Article and Find Full Text PDF

During progression to an androgen-independent state following androgen ablation therapy, prostate cancer cells continue to express the androgen receptor (AR) and androgen-regulated genes, indicating that AR is critical for the proliferation of hormone-refractory prostate cancer cells. Multiple mechanisms have been proposed for the development of AR-dependent hormone-refractory disease, including changes in expression of AR coregulatory proteins, AR mutation, growth factor-mediated activation of AR, and AR protein up-regulation. The most prominent of these progressive changes is the up-regulation of AR that occurs in >90% of prostate cancers.

View Article and Find Full Text PDF

Identifying direct substrates of mitogen-activated protein kinases (MAPKs) and understanding how those substrates are selected is central to understanding how these ubiquitously activated enzymes generate diverse biological responses. In previous work, we identified several new candidate substrates for the MAPK ERK2 (extracellular signal-regulated kinase 2), including the nuclear pore complex protein Tpr (translocated promoter region). In this report, we identify sites on Tpr for ERK2 phosphorylation and binding and demonstrate their functional interaction.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionsdssmkpkelm4ofvtpdjpnhodj0cmpvoi): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once