Publications by authors named "Michael J Watt"

Mild traumatic brain injuries (mild TBIs) commonly occur in young adults of both sexes, oftentimes in high-stress environments. In humans, sex differences have been observed in the development of post-concussive anxiety and PTSD-like behaviors. Progesterone, a sex steroid that has neuroprotective properties, restores cognitive function in animal models following more severe TBI, but its effectiveness in preventing the psychological symptoms associated with mild TBI has not been evaluated.

View Article and Find Full Text PDF

Mild traumatic brain injuries (mild TBIs) can affect both males and females, but females are more likely to report long-term psychological complications, including changes in mood and generalized anxiety. Additionally, reproductive cycle phase has been shown to affect mild TBI symptom expression within females. These variances may result from sex differences in mild TBI-induced alterations to neurotransmission in brain regions that influence mood and emotion, possibly mediated by sex steroids.

View Article and Find Full Text PDF

Organic cation transporter-3 (OCT3) is widely distributed in the brain with high expression in portions of the stress axis. These high capacity, polyspecific transporters function in monoamine clearance and are sensitive to the stress hormone corticosterone. In rats, withdrawal from chronic amphetamine increases OCT3 expression in specific limbic brain regions involved anxiety and stress responses, including the ventral hippocampus, central nucleus of amygdala (CeA) and dorsomedial hypothalamus.

View Article and Find Full Text PDF

Background: Potassium channels play an important role in the basal tone and dilation of cerebral resistance arterioles in response to many stimuli. However, the effect of prenatal alcohol exposure (PAE) on specific potassium channel function remains unknown. The first goal of this study was to determine the influence of PAE on the reactivity of cerebral arterioles to activation of ATP-sensitive potassium (K ) and BK channels.

View Article and Find Full Text PDF

While it is known that dilation of cerebral arterioles to NOS-dependent agonists is impaired in rats exposed to prenatal alcohol, no studies have examined the influence of prenatal alcohol on constrictor response of cerebral arterioles. Our goal was to determine whether constrictor responses of cerebral resistance arterioles are altered by prenatal exposure to alcohol and if any changes differed as a function of age or sex. We fed Sprague-Dawley rat dams a liquid diet with or without alcohol (3% ethanol) for the duration of their pregnancy.

View Article and Find Full Text PDF

Background: Prenatal exposure to alcohol leads to a greater incidence of many cardiovascular-related diseases, presumably via a mechanism that may involve increased oxidative stress. An agonist of peroxisome proliferator-activated receptor gamma (PPARγ; rosiglitazone) has been shown to suppress alcohol-induced neuroinflammation and oxidative stress. The goal of this study was to determine whether acute and chronic treatment with rosiglitazone could restore or prevent impaired nitric oxide synthase (NOS)-dependent responses of cerebral arterioles in male and female adult (14-16 weeks old) rats exposed to alcohol in utero.

View Article and Find Full Text PDF

Serotonin (5-HT) has largely been accepted to be inhibitory to vertebrate aggression, whereas an opposing stimulatory role has been proposed for invertebrates. Herein, we argue that critical gaps in our understanding of the nuanced role of 5-HT in invertebrate systems drove this conclusion prematurely, and that emerging data suggest a previously unrecognized level of phylogenetic conservation with respect to neurochemical mechanisms regulating the expression of aggressive behaviors. This is especially apparent when considering the interplay among factors governing 5-HT activity, many of which share functional homology across taxa.

View Article and Find Full Text PDF

The use of animal models for behavioral and pharmaceutical testing is employed in many different fields of research but often relies solely on male animals. When females are included, the existing literature frequently offers inconsistent results regarding the effects of sex and/or estrous cycle on anxiety-like behaviors. Our current study sought to establish baseline or normative behaviors in three commonly employed tests of anxiety-like behavior, and determine any sex or cycle differences.

View Article and Find Full Text PDF

Despite the conserved function of aggression across taxa in obtaining critical resources such as food and mates, serotonin's (5-HT) modulatory role on aggressive behavior appears to be largely inhibitory for vertebrates but stimulatory for invertebrates. However, critical gaps exist in our knowledge of invertebrates that need to be addressed before definitively stating opposing roles for 5-HT and aggression. Specifically, the role of 5-HT receptor subtypes are largely unknown, as is the potential interactive role of 5-HT with other neurochemical systems known to play a critical role in aggression.

View Article and Find Full Text PDF

Early-life adversity is associated with increased risk for substance abuse in later life, with women more likely to report past and current stress as a mediating factor in their substance use and relapse as compared to men. Preclinical models of neonatal and peri-adolescent (early through late adolescence) stress all support a direct relationship between experiences of early-life adversity and adult substance-related behaviors, and provide valuable information regarding the underlying neurobiology. This review will provide an overview of these animal models and how these paradigms alter drug and alcohol consumption and/or seeking in male and female adults.

View Article and Find Full Text PDF

Adult psychiatric disorders characterized by cognitive deficits reliant on prefrontal cortex (PFC) dopamine are promoted by teenage bullying. Similarly, male Sprague-Dawley rats exposed to social defeat in mid-adolescence (P35-39) show impaired working memory in adulthood (P56-70), along with decreased medial PFC (mPFC) dopamine activity that results in part from increased dopamine transporter-mediated clearance. Here, we determined if dopamine synthesis and D2 autoreceptor-mediated inhibition of dopamine release in the adult mPFC are also enhanced by adolescent defeat to contribute to later dopamine hypofunction.

View Article and Find Full Text PDF

Cognitive deficits are widespread in psychiatric disorders and frequently as debilitating as the affective component. Widely prescribed antidepressants for treating depressive disorders have limited efficacy in normalizing cognitive function. Erythropoietin (Epo) has been shown to improve cognitive function in schizophrenia and treatment resistant depressed patients.

View Article and Find Full Text PDF

Repeated exposure to stress during childhood is associated with increased risk for neuropsychiatric illness, substance use disorders and other behavioral problems in adulthood. However, it is not clear how chronic childhood stress can lead to emergence of such a wide range of symptoms and disorders in later life. One possible explanation lies in stress-induced disruption to the development of specific brain regions associated with executive function and reward processing, deficits in which are common to the disorders promoted by childhood stress.

View Article and Find Full Text PDF

The inbred mouse strains, C57BL/6 and BALB/c have been used widely in preclinical psychiatric research. The differences in stress susceptibility of available strains has provided a useful platform to test pharmacological agents and behavioral responses. Previous brain gene profiling efforts have indicated that the inflammation and immune response gene pathway is the predominant gene network in the differential stress response of BALB/c and C57BL/6 mice.

View Article and Find Full Text PDF

Amphetamine withdrawal increases anxiety and stress sensitivity related to blunted ventral hippocampus (vHipp) and enhances the central nucleus of the amygdala (CeA) serotonin responses. Extracellular serotonin levels are regulated by the serotonin transporter (SERT) and organic cation transporter 3 (OCT3), and vHipp OCT3 expression is enhanced during 24 hours of amphetamine withdrawal, while SERT expression is unaltered. Here, we tested whether OCT3 and SERT expression in the CeA is also affected during acute withdrawal to explain opposing regional alterations in limbic serotonergic neurotransmission and if respective changes continued with two weeks of withdrawal.

View Article and Find Full Text PDF

Mild traumatic brain injuries (TBIs) comprise three-quarters of all TBIs occurring in the United States annually, and psychological symptoms arising from them can last years after injury. One commonly observed symptom following mild TBI is generalized anxiety. Most mild TBIs happen in stressful situations (sports, war, domestic violence, etc.

View Article and Find Full Text PDF

Accurate assessment of the probability of success in an aggressive confrontation with a conspecific is critical to the survival and fitness of the individuals. Various game theory models have examined these assessment strategies under the assumption that contests should favor the animal with the greater resource-holding potential (RHP), body size typically being the proxy. Mutual assessment asserts that an individual can assess their own RHP relative to their opponent, allowing the inferior animal the chance to flee before incurring unnecessary costs.

View Article and Find Full Text PDF

Amphetamine withdrawal is associated with heightened anxiety-like behavior, which is directly driven by blunted stress-induced glucocorticoid receptor-dependent serotonin release in the ventral hippocampus. This suggests that glucocorticoid availability in the ventral hippocampus during stress may be reduced during amphetamine withdrawal. Therefore, we tested whether amphetamine withdrawal alters either peripheral or hippocampal corticosterone stress responses.

View Article and Find Full Text PDF

Mild traumatic brain injury (mTBI) produces symptoms similar to those typifying posttraumatic stress disorder (PTSD) in humans. We sought to determine whether a rodent model of stress concurrent with mTBI produces characteristics of PTSD such as impaired contextual fear extinction, while also examining concurrent alterations to limbic monoamine activity in brain regions relevant to fear and anxiety states. Male rats were exposed to social stress or control conditions immediately prior to mTBI induction, and 6 days later were tested either for anxiety-like behavior using the elevated plus maze (EPM), or for contextual fear conditioning and extinction.

View Article and Find Full Text PDF

Repeated social defeat of adolescent male rats results in adult mesocortical dopamine hypofunction, impaired working memory, and increased contextual anxiety-like behavior. Given the role of glutamate in dopamine regulation, cognition, and fear and anxiety, we investigated potential changes to N-methyl-D-aspartic acid (NMDA) receptors following adolescent social defeat. As both NMDA receptors and mesocortical dopamine are implicated in the expression and extinction of conditioned fear, a separate cohort of rats was challenged with a classical fear conditioning paradigm to investigate whether fear learning is altered by adolescent defeat.

View Article and Find Full Text PDF

During agonistic encounters, the perception of a larger opponent through morphological signaling typically suppresses aggression in the smaller individual, preventing contest intensity escalation. However, non-morphological factors such as central serotonin (5-HT) activity can influence individual aggression, potentially altering contest intensity despite initial size discrepancies. When male stalk-eyed flies (Teleopsis dalmanni) fight, contest escalation is directly proportional to similarity in body size, with escalation being lower in size-mismatched contests.

View Article and Find Full Text PDF

Being bullied during adolescence is associated with later mental illnesses characterized by deficits in cognitive tasks mediated by prefrontal cortex (PFC) dopamine (DA). Social defeat of adolescent male rats, as a model of teenage bullying victimization, results in medial PFC (mPFC) dopamine (DA) hypofunction in adulthood that is associated with increased drug seeking and working memory deficits. Increased expression of the DA transporter (DAT) is also seen in the adult infralimbic mPFC following adolescent defeat.

View Article and Find Full Text PDF

Withdrawal from amphetamine increases anxiety and reduces the ability to cope with stress, which are factors that are believed to contribute to drug relapse. Stress-induced serotonergic transmission in the central nucleus of the amygdala is associated with anxiety states and fear. Conversely, stress-induced increases in ventral hippocampal serotonin (5-HT) levels have been linked to coping mechanisms.

View Article and Find Full Text PDF

Increased depressive and anxiety-like behaviors are exhibited by rats and humans during withdrawal from psychostimulants. Anxiety-like behaviors observed during amphetamine withdrawal are mediated by increased expression and activity of corticotropin releasing factor type 2 (CRF2) receptors in the dorsal raphe nucleus (dRN). Anxiety-like behavior of rats during withdrawal can be reversed by CRF2 receptor antagonism in the dRN, but the efficacy of global central CRF2 receptor antagonism is unknown.

View Article and Find Full Text PDF

Leachate from stabilized landfill can pose unique challenges to conventional biological wastewater treatment. Ozone-based advanced oxidation processes have garnered recent consideration as an option to reduce the organic strength and recalcitrance of aged landfill leachate. With a bench-scale investigation, the reported work examines the potential for leachate conditioning for further biological treatment by treatment with low-mg/L doses of ozone (0-7.

View Article and Find Full Text PDF