Publications by authors named "Michael J Volles"

Alpha-synuclein (alpha-syn), a protein implicated in Parkinson's disease, is structurally diverse. In addition to its random-coil state, alpha-syn can adopt an alpha-helical structure upon lipid membrane binding or a beta-sheet structure upon aggregation. We used yeast biology and in vitro biochemistry to detect how sequence changes alter the structural propensity of alpha-syn.

View Article and Find Full Text PDF

To investigate the alpha-synuclein protein and its role in Parkinson's disease, we screened a library of random point mutants both in vitro and in yeast to find variants in an unbiased way that could help us understand the sequence-phenotype relationship. We developed a rapid purification method that allowed us to screen 59 synuclein mutants in vitro and discovered two double-point mutants that fibrillized slowly relative to wild-type, A30P, and A53T alpha-synucleins. The yeast toxicity of all of these proteins was measured, and we found no correlation with fibrillization rate, suggesting that fibrillization is not necessary for synuclein-induced yeast toxicity.

View Article and Find Full Text PDF

A computer program for the generation and analysis of in silico random point mutagenesis libraries is described. The program operates by mutagenizing an input nucleic acid sequence according to mutation parameters specified by the user for each sequence position and type of point mutation. The program can mimic almost any type of random mutagenesis library, including those produced via error-prone PCR (ep-PCR), mutator Escherichia coli strains, chemical mutagenesis, and doped or random oligonucleotide synthesis.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurologic disorder resulting from the loss of dopaminergic neurons in the brain. Two lines of evidence suggest that the protein alpha-synuclein plays a role in the pathogenesis of PD: Fibrillar alpha-synuclein is a major component of Lewy bodies in diseased neurons, and two mutations in alpha-synuclein are linked to early-onset disease. Accordingly, the fibrillization of alpha-synuclein is proposed to contribute to neurodegeneration in PD.

View Article and Find Full Text PDF

Parkinson's disease (PD) is linked to mutations in the protein alpha-synuclein, which can exist in vitro in several aggregation states, including a natively unfolded monomer, a beta-sheet rich oligomer, or protofibril, and a stable amyloid fibril. This work reviews the current literature that is relevant to two linked questions: which of these species is pathogenic, and what is the mechanism of neurotoxicity? The amyloid fibril, fibrillar aggregates, Lewy bodies, and the alpha-synuclein monomer, which is normally expressed at high levels, are all unlikely to be pathogenic, for reasons discussed here. We therefore favor a toxic protofibril scenario, and propose that the pathogenic species is transiently populated during the process of fibrillization.

View Article and Find Full Text PDF

Two mutations in the protein alpha-synuclein (A30P and A53T) are linked to an autosomal dominant form of Parkinson's disease. Both mutations accelerate the formation of prefibrillar oligomers (protofibrils) in vitro, but the mechanism by which they promote toxicity is unknown. Protofibrils of wild-type alpha-synuclein bind and permeabilize acidic phospholipid vesicles.

View Article and Find Full Text PDF