An antibody-drug conjugate (ADC) targeting CD46 conjugated to monomethyl auristatin has a potent anti-myeloma effect in cell lines in vitro and in vivo, and patient samples treated ex vivo. Here, we tested if CD46-ADC may have the potential to target MM-initiating cells (MM-ICs). CD46 expression was measured on primary MM cells with a stem-like phenotype.
View Article and Find Full Text PDFPurpose: The prognosis of patients with multiple myeloma who are resistant to proteasome inhibitors, immunomodulatory drugs (IMiD), and daratumumab is extremely poor. Even B-cell maturation antigen-specific chimeric antigen receptor T-cell therapies provide only a temporary benefit before patients succumb to their disease. In this article, we interrogate the unique sensitivity of multiple myeloma cells to the alternative strategy of blocking protein translation with omacetaxine.
View Article and Find Full Text PDFThe oncogenic drivers and progression factors in multiple myeloma (MM) are heterogeneous and difficult to target therapeutically. Many different MM drugs have emerged, however, that attack various phenotypic aspects of malignant plasma cells. These drugs are administered in numerous, seemingly interchangeable combinations.
View Article and Find Full Text PDFMultiple myeloma (MM) arises from malignant immunoglobulin (Ig)-secreting plasma cells and remains an incurable, often lethal disease despite therapeutic advances. The unfolded-protein response sensor IRE1α supports protein secretion by deploying a kinase-endoribonuclease module to activate the transcription factor XBP1s. MM cells may co-opt the IRE1α-XBP1s pathway; however, the validity of IRE1α as a potential MM therapeutic target is controversial.
View Article and Find Full Text PDF