Artificial intelligence (AI) has potential to improve the accuracy of screening for valvular and congenital heart disease by auscultation. However, despite recent advances in signal processing and classification algorithms focused on heart sounds, clinical acceptance of this technology has been limited, in part due to lack of objective performance data. We hypothesized that a heart murmur detection algorithm could be quantitatively and objectively evaluated by virtual clinical trial.
View Article and Find Full Text PDFObjective: Computer-aided auscultation in the differentiation of pathologic (AHA class I) from no or innocent murmurs (AHA class III) would be of great value to the general practitioner. This would allow objective screening for structural heart disease, standardized documentation of auscultation findings, and may avoid unnecessary referrals to pediatric cardiologists. Our goal was to assess the quality of a novel computerized algorithm that automatically classifies murmurs in phonocardiograms (PCGs) acquired in a pediatric population.
View Article and Find Full Text PDFThe remarkable mechanical properties of cartilage derive from an interplay of isotropically distributed, densely packed and negatively charged proteoglycans; a highly anisotropic and inhomogeneously oriented fiber network of collagens; and an interstitial electrolytic fluid. We propose a new 3D finite strain constitutive model capable of simultaneously addressing both solid (reinforcement) and fluid (permeability) dependence of the tissue's mechanical response on the patient-specific collagen fiber network. To represent fiber reinforcement, we integrate the strain energies of single collagen fibers-weighted by an orientation distribution function (ODF) defined over a unit sphere-over the distributed fiber orientations in 3D.
View Article and Find Full Text PDFStructurally motivated material models may provide increased insights into the underlying mechanics and physics of arteries under physiological loading conditions. We propose a multiscale model for arterial tissue capturing three different scales (i) a single collagen fibre; (ii) bundle of collagen fibres; and (iii) collagen network within the tissue. The waviness of collagen fibres is introduced by a probability density function for the recruitment stretch at which the fibre starts to bear load.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
October 2014
Cross-linked actin networks are important building blocks of the cytoskeleton. In order to gain deeper insight into the interpretation of experimental data on actin networks, adequate models are required. In this paper we introduce an affine constitutive network model for cross-linked F-actin networks based on nonlinear continuum mechanics, and specialize it in order to reproduce the experimental behavior of in vitro reconstituted model networks.
View Article and Find Full Text PDFBiomech Model Mechanobiol
November 2014
The protein actin is a part of the cytoskeleton and, therefore, responsible for the mechanical properties of the cells. Starting with the single molecule up to the final structure, actin creates a hierarchical structure of several levels exhibiting a remarkable behavior. The hierarchy spans several length scales and limitations in computational power; therefore, there is a call for different mechanical modeling approaches for the different scales.
View Article and Find Full Text PDFThe mechanical properties of a cell are defined mainly by the cytoskeleton. One contributor within this three-dimensional structure is the actin cortex which is located underneath the lipid bilayer. It forms a nearly isotropic and densely cross-linked protein network.
View Article and Find Full Text PDFFilamentous actin is one of the main constituents of the eukaryotic cytoskeleton. The actin cortex, a densely cross-linked network, resides underneath the lipid bilayer. In the present work we propose a continuum mechanical formulation for describing the viscoelastic properties of in vitro actin networks, which serve as model systems for the cortex, by including the microstructure, i.
View Article and Find Full Text PDF