Publications by authors named "Michael J Statt"

We present a database resulting from high throughput experimentation, primarily on metal oxide solid state materials. The central relational database, the Materials Provenance Store (MPS), manages the metadata and experimental provenance from acquisition of raw materials, through synthesis, to a broad range of materials characterization techniques. Given the primary research goal of materials discovery of solar fuels materials, many of the characterization experiments involve electrochemistry, along with optical, structural, and compositional characterizations.

View Article and Find Full Text PDF

Owing to the worrying increase in carbon dioxide concentrations in the atmosphere, there is a need to electrify fossil-fuel–powered chemical processes such as the Haber-Bosch ammonia synthesis. Lithium-mediated electrochemical nitrogen reduction has shown preliminary promise but still lacks sufficient faradaic efficiency and ammonia formation rate to be industrially relevant. Here, we show that oxygen, previously believed to hinder the reaction, actually greatly improves the faradaic efficiency and stability of the lithium-mediated nitrogen reduction when added to the reaction atmosphere in small amounts.

View Article and Find Full Text PDF

Scaling relations and volcano plots are widely used in heterogeneous catalysis. In this Perspective, we discuss the prospects and challenges associated with the application of similar concepts in homogeneous catalysis using examples from the literature that have appeared recently.

View Article and Find Full Text PDF

The competition between the hydrogen evolution reaction and the electrochemical reduction of carbon dioxide to multi-carbon products is a well-known challenge. In this study, we present a simple micro-kinetic model of these competing reactions over a platinum catalyst under a strong reducing potential at varying proton concentrations in a non-aqueous solvent. The model provides some insight into the mechanism of reaction and suggests that low proton concentration and a high fraction of stepped sites is likely to improve selectivity to multi-carbon products.

View Article and Find Full Text PDF

The electrochemical synthesis of ammonia from nitrogen under mild conditions using renewable electricity is an attractive alternative to the energy-intensive Haber-Bosch process, which dominates industrial ammonia production. However, there are considerable scientific and technical challenges facing the electrochemical alternative, and most experimental studies reported so far have achieved only low selectivities and conversions. The amount of ammonia produced is usually so small that it cannot be firmly attributed to electrochemical nitrogen fixation rather than contamination from ammonia that is either present in air, human breath or ion-conducting membranes, or generated from labile nitrogen-containing compounds (for example, nitrates, amines, nitrites and nitrogen oxides) that are typically present in the nitrogen gas stream, in the atmosphere or even in the catalyst itself.

View Article and Find Full Text PDF