Publications by authors named "Michael J Rowan"

Article Synopsis
  • Alzheimer's disease is marked by cognitive decline due to the buildup of amyloid-β and tau proteins, which affect synaptic function and correlate with cognitive status.
  • The study investigates the effects of synaptotoxic tau and amyloid-β on long-term depression in the hippocampus using animal models and various sources of these proteins.
  • Results demonstrated that tau and amyloid-β from different origins similarly enhance long-term synaptic weakening, suggesting they both contribute to cognitive dysfunction in Alzheimer's disease.
View Article and Find Full Text PDF

How the two pathognomonic proteins of Alzheimer's disease (AD); amyloid ß (Aß) and tau, cause synaptic failure remains enigmatic. Certain synthetic and recombinant forms of these proteins are known to act concurrently to acutely inhibit long-term potentiation (LTP). Here, we examined the effect of early amyloidosis on the acute disruptive action of synaptotoxic tau prepared from recombinant protein and tau in patient-derived aqueous brain extracts.

View Article and Find Full Text PDF

Non-invasive sensory stimulation in the range of the brain's gamma rhythm (30-100 Hz) is emerging as a new potential therapeutic strategy for the treatment of Alzheimer's disease (AD). Here, we investigated the effect of repeated combined exposure to 40 Hz synchronized sound and light stimuli on hippocampal long-term potentiation (LTP) in vivo in three rat models of early AD. We employed a very complete model of AD amyloidosis, amyloid precursor protein (APP)-overexpressing transgenic McGill-R-Thy1-APP rats at an early pre-plaque stage, systemic treatment of transgenic APP rats with corticosterone modelling certain environmental AD risk factors and, importantly, intracerebral injection of highly disease-relevant AD patient-derived synaptotoxic beta-amyloid and tau in wild-type animals.

View Article and Find Full Text PDF

Amyloid β protein (Aβ) and tau, the two main proteins implicated in causing Alzheimer's disease (AD), are posited to trigger synaptic dysfunction long before significant synaptic loss occurs in vulnerable circuits. Whereas soluble Aβ aggregates from AD brain are well recognized potent synaptotoxins, less is known about the synaptotoxicity of soluble tau from AD or other tauopathy patient brains. Minimally manipulated patient-derived aqueous brain extracts contain the more diffusible native forms of these proteins.

View Article and Find Full Text PDF

Cognitive decline in Alzheimer's disease correlates with the extent of tau pathology, in particular tau hyperphosphorylation that initially appears in the transentorhinal and related regions of the brain including the hippocampus. Recent evidence indicates that tau hyperphosphorylation caused by either amyloid-β or long-term depression, a form of synaptic weakening involved in learning and memory, share similar mechanisms. Studies from our group and others demonstrate that long-term depression-inducing low-frequency stimulation triggers tau phosphorylation at different residues in the hippocampus under different experimental conditions including aging.

View Article and Find Full Text PDF

Background: Cognitive decline in Alzheimer's disease (AD) correlates with the extent of tau pathology, in particular tau hyperphosphorylation, which is strongly age-associated. Although elevation of cerebrospinal fluid or blood levels of phosphorylated tau (p-Tau) at residues Thr181 (p-Tau181), Thr217 (p-Tau217), and Thr231 (p-Tau231) are proposed to be particularly sensitive markers of preclinical AD, the generation of p-Tau during brain activity is poorly understood.

Objective: To study whether the expression levels of p-Tau181, p-Tau217, and p-Tau231 can be enhanced by physiological synaptic long-term depression (LTD) which has been linked to the enhancement of p-Tau in hippocampus.

View Article and Find Full Text PDF

Soluble amyloid-β-protein (Aβ) oligomers, a major hallmark of AD, trigger the integrated stress response (ISR) via multiple pathologies including neuronal hyperactivation, microvascular hypoxia, and neuroinflammation. Increasing eIF2α phosphorylation, the core event of ISR, facilitates metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD), and suppressing its phosphorylation has the opposite effect. Having found the facilitation of mGluR5-LTD by Aβ in live rats, we wondered if suppressing eIF2α phosphorylation cascade would protect against the synaptic plasticity and cognitive disrupting effects of Aβ.

View Article and Find Full Text PDF

Synaptic dysfunction is a likely proximate cause of subtle cognitive impairment in early Alzheimer's disease. Soluble oligomers are the most synaptotoxic forms of amyloid ß-protein (Aß) and mediate synaptic plasticity disruption in Alzheimer's disease amyloidosis. Because the presence and extent of cortisol excess in prodromal Alzheimer's disease predicts the onset of cognitive symptoms we hypothesised that corticosteroids would exacerbate the inhibition of hippocampal synaptic long-term potentiation in a rat model of Alzheimer's disease amyloidosis.

View Article and Find Full Text PDF

Neuronal network dysfunction is a hallmark of Alzheimer's disease (AD). However, the underlying pathomechanisms remain unknown. We analyzed the hippocampal micronetwork in transgenic McGill-R-Thy1-APP rats (APPtg) at the beginning of extracellular amyloid beta (Aβ) deposition.

View Article and Find Full Text PDF

How endogenously produced soluble amyloid ß-protein (Aß) affects synaptic plasticity in vulnerable circuits should provide insight into early Alzheimer's disease pathophysiology. McGill-R-Thy1-APP transgenic rats, modeling Alzheimer's disease amyloidosis, exhibit an age-dependent soluble Aß-mediated impairment of the induction of long-term potentiation (LTP) by 200 Hz conditioning stimulation at apical CA3-to-CA1 synapses. Here, we investigated if synaptic weakening at these synapses in the form of activity-dependent persistent reversal (depotentiation) of LTP is also altered in pre-plaque rats .

View Article and Find Full Text PDF

Soluble synaptotoxic aggregates of the main pathological proteins of Alzheimer's disease, amyloid β-protein (Aß) and tau, have rapid and potent inhibitory effects on long-term potentiation (LTP). Although the promotion of synaptic weakening mechanisms, including long-term depression (LTD), is posited to mediate LTP inhibition by Aß, little is known regarding the action of exogenous tau on LTD. The present study examined the ability of different assemblies of full-length human tau to affect LTD in the dorsal hippocampus of the anaesthetized rat.

View Article and Find Full Text PDF

Intracellular neurofibrillary tangles (NFTs) composed of tau protein are a neuropathological hallmark of several neurodegenerative diseases, the most common of which is Alzheimer's disease (AD). For some time NFTs were considered the primary cause of synaptic dysfunction and neuronal death, however, more recent evidence suggests that soluble aggregates of tau are key drivers of disease. Here we investigated the effect of different tau species on synaptic plasticity in the male rat hippocampus Intracerebroventricular injection of soluble aggregates formed from either wild-type or P301S human recombinant tau potently inhibited hippocampal long-term potentiation (LTP) at CA3-to-CA1 synapses.

View Article and Find Full Text PDF

The early stages of Alzheimer's disease are associated with synaptic dysfunction prior to overt loss of neurons. To identify extracellular molecules that impair synaptic plasticity in the brain, we studied the secretomes of human iPSC-derived neuronal models of Alzheimer's disease. When introduced into the rat brain, secretomes from human neurons with either a presenilin-1 mutation, amyloid precursor protein duplication, or trisomy of chromosome 21 all strongly inhibit hippocampal long-term potentiation.

View Article and Find Full Text PDF

Synaptic long-term depression (LTD) is believed to underlie critical mnemonic processes in the adult hippocampus. The roles of the metabotropic and ionotropic actions of glutamate in the induction of synaptic LTD by electrical low-frequency stimulation (LFS) in the living adult animal is poorly understood. Here we examined the requirement for metabotropic glutamate (mGlu) and NMDA receptors in LTD induction in anaesthetized adult rats.

View Article and Find Full Text PDF

Pro-inflammatory mechanisms have recently emerged as an important component of early Alzheimer's disease (AD) pathogenesis. A particularly attractive therapeutic strategy is to selectively prevent the disruptive effects of activation of the innate immune system in the brain at an early transitional stage by reducing the production or directly neutralizing pro-inflammatory cytokines, in particular IL-1β and TNF-α. Here we tested their in vivo effects on synaptic plasticity deficits, which provide sensitive and robust measures of synaptic failure, in a rat model of AD amyloidosis.

View Article and Find Full Text PDF

Promotion of long-term depression (LTD) mechanisms by synaptotoxic soluble oligomers of amyloid-β (Aß) has been proposed to underlie synaptic dysfunction in Alzheimer's disease (AD). Previously, LTD was induced by relatively non-specific electrical stimulation. Exploiting optogenetics, we studied LTD using a more physiologically diffuse spatial pattern of selective pathway activation in the rat hippocampus in vivo.

View Article and Find Full Text PDF

Alzheimer's disease amyloid-β (Aβ) oligomers are synaptotoxic, inappropriately increasing extracellular glutamate concentration and glutamate receptor activation to thereby rapidly disrupt synaptic plasticity. Thus, acutely promoting brain glutamate homeostasis with a blood-based scavenging system, glutamate-oxaloacetate transaminase (GOT), and blocking metabotropic glutamate 5 (mGlu5) receptor or its co-receptor cellular prion protein (PrP), prevent the acute inhibition of long-term potentiation (LTP) by exogenous Aβ. Here, we evaluated the time course of the effects of such interventions in the persistent disruptive effects of Aβ oligomers, either exogenously injected in wild type rats or endogenously generated in transgenic rats that model Alzheimer's disease amyloidosis.

View Article and Find Full Text PDF

Aggregated amyloid ß-protein (Aß) is pathognomonic of Alzheimer's disease and certain assemblies of Aß are synaptotoxic. Excess glutamate or diminished glutathione reserve are both implicated in mediating or modulating Aß-induced disruption of synaptic plasticity. The system xc- antiporter promotes Na -independent exchange of cystine with glutamate thereby providing a major source of extracellular glutamate and intracellular glutathione concentrations.

View Article and Find Full Text PDF

Dysregulation of glutamate homeostasis in the interstitial fluid of the brain is strongly implicated in causing synaptic dysfunction in many neurological and psychiatric illnesses. In the case of Alzheimer's disease (AD), amyloid β (Aβ)-mediated disruption of synaptic plasticity and memory can be alleviated by interventions that directly remove glutamate or block certain glutamate receptors. An alternative strategy is to facilitate the removal of excess glutamate from the nervous system by activating peripheral glutamate clearance systems.

View Article and Find Full Text PDF

Despite significant advances, the molecular identity of the cytotoxic species populated during in vivo amyloid formation crucial for the understanding of neurodegenerative disorders is yet to be revealed. In this study lysozyme prefibrillar oligomers and fibrils in both mature and sonicated states have been isolated through an optimized ultrafiltration/ultracentrifugation method and characterized with various optical spectroscopic techniques, atomic force microscopy, and transmission electron microscopy. We examined their level and mode of toxicity on rat pheochromocytoma (PC12) cells in both differentiated and undifferentiated states.

View Article and Find Full Text PDF

β-amyloid (Aβ) oligomers have been closely implicated in the pathogenesis of Alzheimer's disease (AD). We found, for the first time, that bis(heptyl)-cognitin, a novel dimeric acetylcholinesterase (AChE) inhibitor derived from tacrine, prevented Aβ oligomers-induced inhibition of long-term potentiation (LTP) at concentrations that did not interfere with normal LTP. Bis(heptyl)-cognitin also prevented Aβ oligomers-induced synaptotoxicity in primary hippocampal neurons.

View Article and Find Full Text PDF

Alzheimer's disease (AD) and familial Danish dementia (FDD) are degenerative neurological diseases characterized by amyloid pathology. Normal human sera contain IgG antibodies that specifically bind diverse preamyloid and amyloid proteins and have shown therapeutic potential in vitro and in vivo. We cloned one of these antibodies, 3H3, from memory B cells of a healthy individual using a hybridoma method.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates the early functional changes in synaptic long-term potentiation (LTP) before significant plaque formation occurs in Alzheimer's disease using a specific rat model (McGill-R-Thy1-APP transgenic rat).
  • Researchers found that the ability to induce LTP was impaired at around 3.5 months of age, persisting for 2-3 months before plaques started to form, indicating a crucial early indicator of Alzheimer's.
  • They discovered that this synaptic dysfunction was linked to reduced NMDA receptor activity, but could be temporarily reversed with targeted treatments, suggesting potential early therapeutic approaches.
View Article and Find Full Text PDF

Evidence for a central role of amyloid β-protein (Aβ) in the genesis of Alzheimer’s disease (AD) has led to advanced human trials of Aβ-lowering agents. The “amyloid hypothesis” of AD postulates deleterious effects of small, soluble forms of Aβ on synaptic form and function. Because selectively targeting synaptotoxic forms of soluble Aβ could be therapeutically advantageous, it is important to understand the full range of soluble Aβ derivatives.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is associated with pathological assembly states of amyloid-β protein (Aβ). Aβ-related synaptotoxicity can be blocked by anti-prion protein (PrP) antibodies, potentially allowing therapeutic targeting of this aspect of AD neuropathogenesis. Here, we show that intravascular administration of a high-affinity humanized anti-PrP antibody to rats can prevent the plasticity-disrupting effects induced by exposure to soluble AD brain extract.

View Article and Find Full Text PDF