Amyloid A (AA) amyloidosis is found in humans and non-human primates, but quantifying disease risk prior to clinical symptoms is challenging. We applied machine learning to identify the best predictors of amyloidosis in rhesus macaques from available clinical and pathology records. To explore potential biomarkers, we also assessed whether changes in circulating serum amyloid A (SAA) or lipoprotein profiles accompany the disease.
View Article and Find Full Text PDFObesity (Silver Spring)
March 2019
Background: Rhesus macaques are widely used in biomedical research, but the application of genomic information in this species to better understand human disease is still in its infancy. Whole-genome sequence (WGS) data in large pedigreed macaque colonies could provide substantial experimental power for genetic discovery, but the collection of WGS data in large cohorts remains a formidable expense. Here, we describe a cost-effective approach that selects the most informative macaques in a pedigree for 30X WGS, followed by low-cost genotyping-by-sequencing (GBS) at 30X on the remaining macaques in order to generate sparse genotype data at high accuracy.
View Article and Find Full Text PDFLimited guidance is available on practical approaches for maintaining genetic diversity in large NHP colonies that support biomedical research, despite the fact that reduced diversity in these colonies is likely to compromise the application of findings in NHP to human disease. In particular, constraints related to simultaneously housing, breeding, and providing ongoing veterinary care for thousands of animals with a highly complex social structure creates unique challenges for genetic management in these colonies. Because the composition of new breeding groups is a critical component of genetic management, here we outline a 3-stage protocol for forming new breeding groups of NHP that is aimed at maximizing genetic diversity in the face of frequent restrictions on age, sex, and numbers of animals per breeding group.
View Article and Find Full Text PDFThe rhesus macaque is an important model for human atherosclerosis but genetic determinants of relevant phenotypes have not yet been investigated in this species. Because lipid levels are well-established and heritable risk factors for human atherosclerosis, our goal was to assess the heritability of lipoprotein cholesterol and triglyceride levels in a single, extended pedigree of 1,289 Indian-origin rhesus macaques. Additionally, because increasing evidence supports sex differences in the genetic architecture of lipid levels and lipid metabolism in humans and macaques, we also explored sex-specific heritability for all lipid measures investigated in this study.
View Article and Find Full Text PDFAlthough most metazoan mitochondrial genomes are highly streamlined and encode little noncoding DNA outside of the "AT" region, the accumulation of mitochondrial pseudogenes and other types of noncoding DNA has been observed in a growing number of animal groups. The nematode species Caenorhabditis briggsae harbors two mitochondrial DNA (mtDNA) pseudogenes, named Psinad5-1 and Psinad5-2, presumably derived from the nad5 protein-coding gene. Here, we provide an in-depth analysis of mtDNA pseudogene evolution in C.
View Article and Find Full Text PDF