A full account of studies that culminated in the total synthesis of both antipodes and the assignment of its absolute configuration of Saudin, a hypoglycemic natural product. Two approaches are described, the first proceeding though bicyclic lactone intermediates and related second monocyclic esters. The former was obtained via asymmetric Diels-Alder cycloaddition and the latter by an asymmetric annulation protocol.
View Article and Find Full Text PDFHigh throughput screening of our compound collection led to the discovery of a novel series of N-alkyl-5H-pyrido[4,3-b]indol-1-amines as urotensin-II receptor antagonists. Synthesis, initial structure and activity relationships, functional and animal ortholog activities of the series are described.
View Article and Find Full Text PDFAminomethylpiperazines, reported previously as being kappa-opioid receptor agonists, were identified as lead compounds in the development of selective urotensin receptor antagonists. Optimized substitution of the piperazine moiety has provided high affinity urotensin receptor antagonists with greater than 100-fold selectivity over the kappa-opioid receptor. Select compounds were found to inhibit urotensin-induced vasoconstriction in isolated rat aortic rings consistent with the hypothesis that an urotensin antagonist may be useful for the treatment of hypertension.
View Article and Find Full Text PDFLead compound 1 was successfully redesigned to provide compounds with improved pharmacokinetic profiles for this series of human urotensin-II antagonists. Replacement of the 2-pyrrolidinylmethyl-3-phenyl-piperidine core of 1 with a substituted N-methyl-2-(1-pyrrolidinyl)ethanamine core as in compound 7 resulted in compounds with improved oral bioavailability in rats. The relationship between stereochemistry and selectivity for hUT over the kappa-opioid receptor was also explored.
View Article and Find Full Text PDFThis work describes the development of potent and selective human Urotensin-II receptor antagonists starting from lead compound 1, (3,4-dichlorophenyl)methyl{2-oxo-2-[3-phenyl-2-(1-pyrrolidinylmethyl)-1-piperidinyl]ethyl}amine. Several problems relating to oral bioavailability, cytochrome P450 inhibition, and off-target activity at the kappa opioid receptor and cardiac sodium channel were addressed during lead development. hUT binding affinity relative to compound 1 was improved by more than 40-fold in some analogs, and a structural modification was identified which significantly attenuated both off-target activities.
View Article and Find Full Text PDFA series of 2-aminomethyl piperidines has been discovered as novel urotensin-II receptor antagonists. The synthesis, initial structure-activity relationships, and optimization of the initial hit that resulted in the identification of potent, cross-species active, and functional urotensin-II receptor antagonists such as 1a and 11a are described.
View Article and Find Full Text PDF