Publications by authors named "Michael J Motala"

Multiplex electronic antigen sensors for detection of SARS-Cov-2 spike glycoproteins and hemagglutinin from influenza A are fabricated using scalable processes for straightforward transition to economical mass-production. The sensors utilize the sensitivity and surface chemistry of a 2D MoS transducer for attachment of antibody fragments in a conformation favorable for antigen binding with no need for additional linker molecules. To make the devices, ultra-thin layers (3 nm) of amorphous MoS are sputtered over pre-patterned metal electrical contacts on a glass chip at room temperature.

View Article and Find Full Text PDF

Two-dimensional (2D) crystals have renewed opportunities in design and assembly of artificial lattices without the constraints of epitaxy. However, the lack of thickness control in exfoliated van der Waals (vdW) layers prevents realization of repeat units with high fidelity. Recent availability of uniform, wafer-scale samples permits engineering of both electronic and optical dispersions in stacks of disparate 2D layers with multiple repeating units.

View Article and Find Full Text PDF

Heterogeneous integration strategies are increasingly being employed to achieve more compact and capable electronics systems for multiple applications including space, electric vehicles, and wearable and medical devices. To enable new integration strategies, the growth and transfer of thin electronic films and devices, including III-nitrides, metal oxides, and 2D materials, using 2D boron nitride (BN)-on-sapphire templates are demonstrated. The van der Waals (vdW) BN layer, in this case, acts as a preferred mechanical release layer for precise separation at the substrate-film interface and leaves a smooth surface suitable for vdW bonding.

View Article and Find Full Text PDF

The semiconductor-metal junction is one of the most critical factors for high-performance electronic devices. In two-dimensional (2D) semiconductor devices, minimizing the voltage drop at this junction is particularly challenging and important. Despite numerous studies concerning contact resistance in 2D semiconductors, the exact nature of the buried interface under a three-dimensional (3D) metal remains unclear.

View Article and Find Full Text PDF

Mechanical transfer of high-performing thin-film devices onto arbitrary substrates represents an exciting opportunity to improve device performance, explore nontraditional manufacturing approaches, and paves the way for soft, conformal, and flexible electronics. Using a two-dimensional boron nitride release layer, we demonstrate the transfer of AlGaN/GaN high-electron mobility transistors (HEMTs) to arbitrary substrates through both direct van der Waals bonding and with a polymer adhesive interlayer. No device degradation was observed because of the transfer process, and a significant reduction in device temperature (327-132 °C at 600 mW) was observed when directly bonded to a silicon carbide (SiC) wafer relative to the starting wafer.

View Article and Find Full Text PDF

Flexible, stretchable, and spanning microelectrodes that carry signals from one circuit element to another are needed for many emerging forms of electronic and optoelectronic devices. We have patterned silver microelectrodes by omnidirectional printing of concentrated nanoparticle inks in both uniform and high-aspect ratio motifs with minimum widths of approximately 2 micrometers onto semiconductor, plastic, and glass substrates. The patterned microelectrodes can withstand repeated bending and stretching to large levels of strain with minimal degradation of their electrical properties.

View Article and Find Full Text PDF

We explore textural cues as a mechanism for controlling neuronal process outgrowth in primary cultures of mammalian neurons. The work uses a form of decal transfer lithography to generate arrays of PDMS posts of various dimensions and spacings on glass substrates that are rendered growth-compliant by subsequent treatment with a protein activator. Hippocampal neurons plated on these substrates are used to determine how the posts direct process growth by acting as attachment points or guidance cues.

View Article and Find Full Text PDF

The high natural abundance of silicon, together with its excellent reliability and good efficiency in solar cells, suggest its continued use in production of solar energy, on massive scales, for the foreseeable future. Although organics, nanocrystals, nanowires and other new materials hold significant promise, many opportunities continue to exist for research into unconventional means of exploiting silicon in advanced photovoltaic systems. Here, we describe modules that use large-scale arrays of silicon solar microcells created from bulk wafers and integrated in diverse spatial layouts on foreign substrates by transfer printing.

View Article and Find Full Text PDF

A novel microreactor-based photomask capable of effecting high resolution, large area patterning of UV/ozone (UVO) treatments of poly(dimethylsiloxane) (PDMS) surfaces is described. This tool forms the basis of two new soft lithographic patterning techniques that significantly extend the design rules of decal transfer lithography (DTL). The first technique, photodefined cohesive mechanical failure, fuses the design rules of photolithography with the contact-based adhesive transfer of PDMS in DTL.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: