Publications by authors named "Michael J Morrison"

Article Synopsis
  • Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a key enzyme in glycolysis that not only participates in metabolic processes but also affects cancer cell behavior and other cellular functions like transcription and apoptosis.
  • Researchers developed a peptide-based probe called SEC1 that specifically targets and modifies the active site of GAPDH, allowing them to monitor its activity in response to various conditions including cancer transformation and small-molecule inhibitors like Koningic acid (KA).
  • KA was shown to be a highly effective inhibitor of GAPDH, demonstrating a specific mechanism of action and potential therapeutic benefits in reducing cytokine production in an autoimmune model, showcasing its value in studying GAPDH activity and inhibition in biological systems.
View Article and Find Full Text PDF

Turnover of substrates by many enzymes involves free enzyme forms that differ from the stable form of the enzyme in the absence of substrate. These enzyme species, known as isoforms, have, in general, different physical and chemical properties than the native enzymes. They usually occur only in small concentrations under steady state turnover conditions and thus are difficult to detect.

View Article and Find Full Text PDF

WHSC1 is a histone methyltransferase that is responsible for mono- and dimethylation of lysine 36 on histone H3 and has been implicated as a driver in a variety of hematological and solid tumors. Currently, there is a complete lack of validated chemical matter for this important drug discovery target. Herein we report on the first fully validated WHSC1 inhibitor, PTD2, a norleucine-containing peptide derived from the histone H4 sequence.

View Article and Find Full Text PDF

The glycoproteins of selected microbial pathogens often include highly modified carbohydrates such as 2,4-diacetamidobacillosamine (diNAcBac). These glycoconjugates are involved in host-cell interactions and may be associated with the virulence of medically significant Gram-negative bacteria. In light of genetic studies demonstrating the attenuated virulence of bacterial strains in which modified carbohydrate biosynthesis enzymes have been knocked out, we are developing small molecule inhibitors of selected enzymes as tools to evaluate whether such compounds modulate virulence.

View Article and Find Full Text PDF

Prokaryote-specific sugars, including N,N'-diacetylbacillosamine (diNAcBac) and pseudaminic acid, have experienced a renaissance in the past decade because of their discovery in glycans related to microbial pathogenicity. DiNAcBac is found at the reducing end of oligosaccharides of N- and O-linked bacterial protein glycosylation pathways of Gram-negative pathogens, including Campylobacter jejuni and Neisseria gonorrhoeae. Further derivatization of diNAcBac results in the nonulosonic acid known as legionaminic acid, which was first characterized in the O-antigen of the lipopolysaccharide (LPS) in Legionella pneumophila.

View Article and Find Full Text PDF

UDP-N,N'-diacetylbacillosamine (UDP-diNAcBac) is a unique carbohydrate produced by a number of bacterial species and has been implicated in pathogenesis. The terminal step in the formation of this important bacterial sugar is catalyzed by an acetyl-CoA (AcCoA)-dependent acetyltransferase in both N- and O-linked protein glycosylation pathways. This bacterial acetyltransferase is a member of the left-handed β-helix family and forms a homotrimer as the functional unit.

View Article and Find Full Text PDF

The Gram-negative, opportunistic pathogen Acinetobacter baumannii has recently captured headlines due to its ability to circumvent current antibiotic therapies. Herein we show that the multi-drug resistant (MDR) AYE strain of A. baumannii contains a gene locus that encodes three enzymes responsible for the biosynthesis of the highly-modified bacterial nucleotide sugar, UDP-N,N'-diacetylbacillosamine (UDP-diNAcBac).

View Article and Find Full Text PDF

The O-linked protein glycosylation pathway in Neisseria gonorrhoeae is responsible for the synthesis of a complex oligosaccharide on undecaprenyl diphosphate and subsequent en bloc transfer of the glycan to serine residues of select periplasmic proteins. Protein glycosylation (pgl) genes have been annotated on the basis of bioinformatics and top-down mass spectrometry analysis of protein modifications in pgl-null strains [Aas, F. E.

View Article and Find Full Text PDF

The insulin-like growth factor-1 receptor (IGF-1R) plays an important role in the regulation of cell growth and differentiation, and in protection from apoptosis. IGF-1R has been shown to be an appealing target for the treatment of human cancer. Herein, we report the synthesis, structure-activity relationships (SAR), X-ray cocrystal structure and in vivo tumor study results for a series of 2,4-bis-arylamino-1,3-pyrimidines.

View Article and Find Full Text PDF

The discovery of aurora kinases as essential regulators of cell division has led to intense interest in identifying small molecule aurora kinase inhibitors for the potential treatment of cancer. A high-throughput screening effort identified pyridinyl-pyrimidine 6a as a moderately potent dual inhibitor of aurora kinases -A and -B. Optimization of this hit resulted in an anthranilamide lead (6j) that possessed improved enzyme and cellular activity and exhibited a high level of kinase selectivity.

View Article and Find Full Text PDF

Angiogenesis is vital for solid tumor growth, and its prevention is a proven strategy for the treatment of disease states such as cancer. The vascular endothelial growth factor (VEGF) pathway provides several opportunities by which small molecules can act as inhibitors of endothelial proliferation and migration. Critical to these processes is signaling through VEGFR-2 or the kinase insert domain receptor (KDR) upon stimulation by its ligand VEGF.

View Article and Find Full Text PDF

Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets. The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome. We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome.

View Article and Find Full Text PDF

The lymphocyte-specific kinase (Lck) is a cytoplasmic tyrosine kinase of the Src family expressed in T cells and NK cells. Genetic evidence in both mice and humans demonstrates that Lck kinase activity is critical for signaling mediated by the T cell receptor (TCR), which leads to normal T cell development and activation. A small molecule inhibitor of Lck is expected to be useful in the treatment of T cell-mediated autoimmune and inflammatory disorders and/or organ transplant rejection.

View Article and Find Full Text PDF