Publications by authors named "Michael J Misamore"

The plasma membranes of gametes are specialized for fusion, yet, once fusion occurs, in many organisms the new zygote becomes incapable of further membrane fusion reactions. The molecular mechanisms that underlie this loss of fusion capacity (block to polygamy) remain unknown. During fertilization in the green alga Chlamydomonas, the plus gamete-specific membrane protein FUS1 is required for adhesion between the apically localized sites on the plasma membranes of plus and minus gametes that are specialized for fusion, and the minus-specific membrane protein HAP2 is essential for completion of the membrane fusion reaction.

View Article and Find Full Text PDF

The objective of this study is to identify surface carbohydrates on zebra mussel, Dreissena polymorpha, eggs and sperm and to analyze their potential role in fertilization. The lectins WGA, Con A, LcH, LTA, SBA, PNA, and GSII were tested for affinity to both eggs and sperm. WGA, Con A, and LcH uniformly labeled eggs.

View Article and Find Full Text PDF

The invasive zebra mussel, Dreissena polymorpha (D. polymorpha), is proving to be a valuable model for understanding general mechanisms of fertilization, particularly regarding sperm incorporation. In the present study, we tracked the various components of the fertilizing sperm of D.

View Article and Find Full Text PDF

The molecular mechanisms of the defining event in fertilization, gamete fusion, remain poorly understood. The FUS1 gene in the unicellular, biflagellated green alga Chlamydomonas is one of the few sex-specific eukaryotic genes shown by genetic analysis to be essential for gamete fusion during fertilization. In Chlamydomonas, adhesion and fusion of the plasma membranes of activated mt+ and mt- gametes is accomplished via specialized fusion organelles called mating structures.

View Article and Find Full Text PDF

Fertilization in Chlamydomonas begins with flagellar adhesion between mating type plus and mating type minus gametes and is consummated within minutes by zygote formation. Once fusion occurs, the newly merged gametes cease existence as distinct entities, and the diploid zygote immediately initiates transcription of zygote-specific genes. Accomplishing fertilization within such a short time requires the rapid and signaled movement of pre-existing membrane and cytoplasmic proteins between and within several cellular compartments.

View Article and Find Full Text PDF