Publications by authors named "Michael J Macdonald"

Article Synopsis
  • The study uses 11.2 keV X-ray diffraction to observe the crystallization of supercooled liquid hydrogen below its melting point.
  • Researchers measured changes in the solid and liquid structures dynamically, allowing them to identify the lowest energy crystal forms and determine densities and temperatures.
  • Findings show evidence of Arrhenius-like growth kinetics in the stacking direction during the supercooling process.
View Article and Find Full Text PDF

Net synthesis of pancreatic β-cells peaks before 2 years of life. β-Cell mass is set within the first 5 years of life. In-frame translational readthrough of the NRP1 gene exon 9 into intron 9 generates a truncated neuropilin-1 protein lacking downstream sequence necessary for binding VEGF that stimulates β-cell replication.

View Article and Find Full Text PDF

High-energy-density physics is the field of physics concerned with studying matter at extremely high temperatures and densities. Such conditions produce highly nonlinear plasmas, in which several phenomena that can normally be treated independently of one another become strongly coupled. The study of these plasmas is important for our understanding of astrophysics, nuclear fusion and fundamental physics-however, the nonlinearities and strong couplings present in these extreme physical systems makes them very difficult to understand theoretically or to optimize experimentally.

View Article and Find Full Text PDF

Mitochondrial glycerol phosphate dehydrogenase (mGPD) is the rate-limiting enzyme of the glycerol phosphate redox shuttle. It was recently claimed that metformin, a first-line drug used for the treatment of type 2 diabetes, inhibits liver mGPD 30-50%, suppressing gluconeogenesis through a redox mechanism. Various factors cast doubt on this idea.

View Article and Find Full Text PDF

Positive interactions are sensitive to human activities, necessitating synthetic approaches to elucidate broad patterns and predict future changes if these interactions are altered or lost. General understanding of freshwater positive interactions has been far outpaced by knowledge of these important relationships in terrestrial and marine ecosystems. We conducted a global meta-analysis to evaluate the magnitude of positive interactions across freshwater habitats.

View Article and Find Full Text PDF

Given unprecedented rates of biodiversity loss, there is an urgency to better understand the ecological consequences of interactions among organisms that may lost or altered. Positive interactions among organisms of the same or different species that directly or indirectly improve performance of at least one participant can structure populations and communities and control ecosystem process. However, we are still in need of synthetic approaches to better understand how positive interactions scale spatio-temporally across a range of taxa and ecosystems.

View Article and Find Full Text PDF

White dwarfs represent the final state of evolution for most stars. Certain classes of white dwarfs pulsate, leading to observable brightness variations, and analysis of these variations with theoretical stellar models probes their internal structure. Modelling of these pulsating stars provides stringent tests of white dwarf models and a detailed picture of the outcome of the late stages of stellar evolution.

View Article and Find Full Text PDF

Pyruvate carboxylase (PC) is an anaplerotic enzyme that supplies oxaloacetate to mitochondria enabling the maintenance of other metabolic intermediates consumed by cataplerosis. Using liquid chromatography mass spectrometry (LC-MS) to measure metabolic intermediates derived from uniformly labeled C-glucose or [3-C]l-lactate, we investigated the contribution of PC to anaplerosis and cataplerosis in the liver cell line HepG2. Suppression of PC expression by short hairpin RNA lowered incorporation of C glucose incorporation into tricarboxylic acid cycle intermediates, aspartate, glutamate and sugar derivatives, indicating impaired cataplerosis.

View Article and Find Full Text PDF

Fructose-1,6-bisphosphatase (FBP1) plays an essential role in gluconeogenesis. Here we report that the human FBP1 gene is regulated by two liver-enriched transcription factors, CCAAT-enhancer binding protein-α (C/EBPα) and hepatocyte nuclear factor 4α (HNF4α) in human hepatoma HepG2 cells. C/EBPα regulates transcription of FBP1 gene via binding to the two overlapping C/EBPα sites located at nucleotide -228/-208 while HNF4α regulates FBP1 gene through binding to the classical H4-SBM site and direct repeat 3 (DR3) located at nucleotides -566/-554 and -212/-198, respectively.

View Article and Find Full Text PDF

Long-chain acyl-CoA synthetases (ACSLs) convert fatty acids to fatty acyl-CoAs to regulate various physiologic processes. We characterized the ACSL isoforms in a cell line of homogeneous rat beta cells (INS-1 832/13 cells) and human pancreatic islets. ACSL4 and ACSL3 proteins were present in the beta cells and human and rat pancreatic islets and concentrated in insulin secretory granules and less in mitochondria and negligible in other intracellular organelles.

View Article and Find Full Text PDF

We recently showed that the anaplerotic enzyme pyruvate carboxylase (PC) is up-regulated in human breast cancer tissue and its expression is correlated with the late stages of breast cancer and tumor size [Phannasil et al., PloS One 10, e0129848, 2015]. In the current study we showed that PC enzyme activity is much higher in the highly invasive breast cancer cell line MDA-MB-231 than in less invasive breast cancer cell lines.

View Article and Find Full Text PDF

Objective: Glucose-stimulated insulin secretion in pancreatic beta cells requires metabolic signals including the generation of glucose-derived short chain acyl-CoAs in the cytosol from mitochondrially-derived metabolites. One concept of insulin secretion is that ATP citrate lyase generates short chain acyl-CoAs in the cytosol from mitochondrially-derived citrate. Of these, malonyl-CoA, is believed to be an important signal in insulin secretion.

View Article and Find Full Text PDF

A mechanistic cause for Mauriac syndrome, a syndrome of growth failure and delayed puberty associated with massive liver enlargement from glycogen deposition in children with poorly controlled type 1 diabetes, is unknown. We discovered a mutation in the catalytic subunit of liver glycogen phosphorylase kinase in a patient with Mauriac syndrome whose liver extended into his pelvis. Glycogen phosphorylase kinase activates glycogen phosphorylase, the enzyme that catalyzes the first step in glycogen breakdown.

View Article and Find Full Text PDF

The negative charge of phosphatidylserine in lipid bilayers of secretory vesicles and plasma membranes couples the domains of positively charged amino acids of secretory vesicle SNARE proteins with similar domains of plasma membrane SNARE proteins enhancing fusion of the two membranes to promote exocytosis of the vesicle contents of secretory cells. Our recent study of insulin secretory granules (ISG) (MacDonald, M. J.

View Article and Find Full Text PDF

Pyruvate carboxylase (PC) is an anaplerotic enzyme that catalyzes the carboxylation of pyruvate to oxaloacetate, which is crucial for replenishing tricarboxylic acid cycle intermediates when they are used for biosynthetic purposes. We examined the expression of PC by immunohistochemistry of paraffin-embedded breast tissue sections of 57 breast cancer patients with different stages of cancer progression. PC was expressed in the cancerous areas of breast tissue at higher levels than in the non-cancerous areas.

View Article and Find Full Text PDF

The lipid composition of insulin secretory granules (ISG) has never previously been thoroughly characterized. We characterized the phospholipid composition of ISG and mitochondria in pancreatic beta cells without and with glucose stimulation. The phospholipid/protein ratios of most phospholipids containing unsaturated fatty acids were higher in ISG than in whole cells and in mitochondria.

View Article and Find Full Text PDF

Pancreatic β-cells with severely knocked down cytosolic malic enzyme (ME1) and mitochondrial NAD(P) malic enzyme (ME2) show normal insulin secretion. The mitochondrial NADP malic enzyme (ME3) is very low in pancreatic β-cells, and ME3 was previously thought unimportant for insulin secretion. Using short hairpin RNAs that targeted one or more malic enzyme mRNAs in the same cell, we generated more than 25 stable INS-1 832/13-derived insulin cell lines expressing extremely low levels of ME1, ME2, and ME3 alone or low levels of two of these enzymes in the same cell line.

View Article and Find Full Text PDF

Pyruvate carboxylase (PC) is an anaplerotic enzyme that regulates glucose-induced insulin secretion in pancreatic islets. Dysregulation of its expression is associated with type 2 diabetes. Herein we describe the molecular mechanism underlying the glucose-mediated transcriptional regulation of the PC gene.

View Article and Find Full Text PDF

Metformin is considered to be one of the most effective therapeutics for treating type 2 diabetes because it specifically reduces hepatic gluconeogenesis without increasing insulin secretion, inducing weight gain or posing a risk of hypoglycaemia. For over half a century, this agent has been prescribed to patients with type 2 diabetes worldwide, yet the underlying mechanism by which metformin inhibits hepatic gluconeogenesis remains unknown. Here we show that metformin non-competitively inhibits the redox shuttle enzyme mitochondrial glycerophosphate dehydrogenase, resulting in an altered hepatocellular redox state, reduced conversion of lactate and glycerol to glucose, and decreased hepatic gluconeogenesis.

View Article and Find Full Text PDF

A 10 year old girl presented with severe diabetic ketoacidosis (DKA) and a hemoglobin A1C of 17.9%. On hospital day 2 after acidosis had improved it worsened and she developed excruciating abdominal pain.

View Article and Find Full Text PDF

Background: There are three isocitrate dehydrogenases (IDHs) in the pancreatic insulin cell; IDH1 (cytosolic) and IDH2 (mitochondrial) use NADP(H). IDH3 is mitochondrial, uses NAD(H) and was believed to be the IDH that supports the citric acid cycle.

Methods: With shRNAs targeting mRNAs for these enzymes we generated cell lines from INS-1 832/13 cells with severe (80%-90%) knockdown of the mitochondrial IDHs separately and together in the same cell line.

View Article and Find Full Text PDF

Pyruvate carboxylase (PC) is an enzyme that plays a crucial role in many biosynthetic pathways in various tissues including glucose-stimulated insulin secretion. In the present study, we identify promoter usage of the human PC gene in pancreatic beta cells. The data show that in the human, two alternative promoters, proximal and distal, are responsible for the production of multiple mRNA isoforms as in the rat and mouse.

View Article and Find Full Text PDF

We previously showed that knockdown of the anaplerotic enzyme pyruvate carboxylase in the INS-1 832/13 insulinoma cell line inhibited glucose-stimulated insulin release and glucose carbon incorporation into lipids. We now show that knockdown of fatty acid synthase (FAS) mRNA and protein also inhibits glucose-stimulated insulin release in this cell line. Levels of numerous phospholipids, cholesterol esters, diacylglycerol, triglycerides and individual fatty acids with C14-C24 side chains were acutely lowered about 20% in glucose-stimulated pyruvate carboxylase knockdown cells over a time course that coincides with insulin secretion.

View Article and Find Full Text PDF

We report electrical conductance and thermopower measurements on InAs nanowires synthesized by chemical vapor deposition. Gate modulation of the thermopower of individual InAs nanowires with a diameter around 20 nm is obtained over T = 40-300 K. At low temperatures (T < ∼100 K), oscillations in the thermopower and power factor concomitant with the stepwise conductance increases are observed as the gate voltage shifts the chemical potential of electrons in InAs nanowire through quasi-one-dimensional (1D) subbands.

View Article and Find Full Text PDF