Publications by authors named "Michael J Lundemann"

Background: Magnetic resonance imaging (MRI) cerebral blood volume (CBV) measurements improve the diagnosis of recurrent gliomas. The study investigated the prognostic value of dynamic contrast-enhanced (DCE) CBV imaging in treated IDH wildtype glioblastoma when added to MRI or amino acid positron emission tomography (PET).

Methods: Hybrid [F]FET PET/MRI with 2CXM (2-compartment exchange model) DCE from 86 adult patients with suspected recurrent or residual glioblastoma were retrospectively analyzed.

View Article and Find Full Text PDF

Purpose: Both amino acid positron emission tomography (PET) and magnetic resonance imaging (MRI) blood volume (BV) measurements are used in suspected recurrent high-grade gliomas. We compared the separate and combined diagnostic yield of simultaneously acquired dynamic contrast-enhanced (DCE) perfusion MRI and O-(2-[F]-fluoroethyl)-L-tyrosine ([F]FET) PET in patients with anaplastic astrocytoma and glioblastoma following standard therapy.

Methods: A total of 76 lesions in 60 hybrid [F]FET PET/MRI scans with DCE MRI from patients with suspected recurrence of anaplastic astrocytoma and glioblastoma were included retrospectively.

View Article and Find Full Text PDF

Introduction: The exact dependence of biological effect on dose and linear energy transfer (LET) in human tissue when delivering proton therapy is unknown. In this study, we propose a framework for measuring this dependency using multi-modal image-based assays with deformable registrations within imaging sessions and across time.

Materials And Methods: 3T MRI scans were prospectively collected from 6 pediatric brain cancer patients before they underwent proton therapy treatment, and every 3 months for a year after treatment.

View Article and Find Full Text PDF

In this paper we present a method for simultaneously segmenting brain tumors and an extensive set of organs-at-risk for radiation therapy planning of glioblastomas. The method combines a contrast-adaptive generative model for whole-brain segmentation with a new spatial regularization model of tumor shape using convolutional restricted Boltzmann machines. We demonstrate experimentally that the method is able to adapt to image acquisitions that differ substantially from any available training data, ensuring its applicability across treatment sites; that its tumor segmentation accuracy is comparable to that of the current state of the art; and that it captures most organs-at-risk sufficiently well for radiation therapy planning purposes.

View Article and Find Full Text PDF

Background: We sought to assess the impact of amino-acid (18)F-fluoro-ethyl-tyrosine (FET) positron emission tomography (PET) on the volumetric target definition for radiation therapy of high-grade glioma versus the current standard using MRI alone. Specifically, we investigated the influence of tumor grade, MR-defined tumor volume, and the extent of surgical resection on PET positivity.

Methods: Fifty-four consecutive high-grade glioma patients (World Health Organization grades III-IV) with confirmed histology were scanned using FET-PET/CT and T1 and T2/fluid attenuated inversion recovery MRI.

View Article and Find Full Text PDF