The spatial and environmental features of regions where clades are evolving are expected to impact biogeographic processes such as speciation, extinction, and dispersal. Any number of regional features (such as elevation, distance, area, etc.) may be directly or indirectly related to these processes.
View Article and Find Full Text PDFWhere each species actually lives is distinct from where it could potentially survive and persist. This suggests that it may be important to distinguish established from enabled biome affinities when considering how ancestral species moved and evolved among major habitat types. We introduce a new phylogenetic method, called RFBS, to model how anagenetic and cladogenetic events cause established and enabled biome affinities (or, more generally, other discrete realized versus fundamental niche states) to shift over evolutionary timescale.
View Article and Find Full Text PDFMany realistic phylogenetic models lack tractable likelihood functions, prohibiting their use with standard inference methods. We present phyddle, a pipeline-based toolkit for performing phylogenetic modeling tasks using likelihood-free deep learning approaches. phyddle coordinates modeling tasks through five analysis steps (, , , , and ) that transform raw phylogenetic datasets as input into numerical and visualized model-based output.
View Article and Find Full Text PDFWe introduce PhyloJunction, a computational framework designed to facilitate the prototyping, testing, and characterization of evolutionary models. PhyloJunction is distributed as an open-source Python library that can be used to implement a variety of models, thanks to its flexible graphical modeling architecture and dedicated model specification language. Model design and use are exposed to users via command-line and graphical interfaces, which integrate the steps of simulating, summarizing, and visualizing data.
View Article and Find Full Text PDFWe establish a general framework using a diffusion approximation to simulate forward-in-time state counts or frequencies for cladogenetic state-dependent speciation-extinction (ClaSSE) models. We apply the framework to various two- and three-region geographic-state speciation-extinction (GeoSSE) models. We show that the species range state dynamics simulated under tree-based and diffusion-based processes are comparable.
View Article and Find Full Text PDFWe establish a general framework using a diffusion approximation to simulate forward-in-time state counts or frequencies for cladogenetic state-dependent speciation-extinction (ClaSSE) models. We apply the framework to various two- and three-region geographic-state speciation-extinction (GeoSSE) models. We show that the species range state dynamics simulated under tree-based and diffusion-based processes are comparable.
View Article and Find Full Text PDFAnalysis of phylogenetic trees has become an essential tool in epidemiology. Likelihood-based methods fit models to phylogenies to draw inferences about the phylodynamics and history of viral transmission. However, these methods are often computationally expensive, which limits the complexity and realism of phylodynamic models and makes them ill-suited for informing policy decisions in real-time during rapidly developing outbreaks.
View Article and Find Full Text PDFWe introduce PhyloJunction, a computational framework designed to facilitate the prototyping, testing, and characterization of evolutionary models. PhyloJunction is distributed as an open-source Python library that can be used to implement a variety of models, through its flexible graphical modeling architecture and dedicated model specification language. Model design and use are exposed to users via command-line and graphical interfaces, which integrate the steps of simulating, summarizing, and visualizing data.
View Article and Find Full Text PDFButterflies are a diverse and charismatic insect group that are thought to have evolved with plants and dispersed throughout the world in response to key geological events. However, these hypotheses have not been extensively tested because a comprehensive phylogenetic framework and datasets for butterfly larval hosts and global distributions are lacking. We sequenced 391 genes from nearly 2,300 butterfly species, sampled from 90 countries and 28 specimen collections, to reconstruct a new phylogenomic tree of butterflies representing 92% of all genera.
View Article and Find Full Text PDFThe extraordinary number of species in the tropics when compared to the extra-tropics is probably the most prominent and consistent pattern in biogeography, suggesting that overarching processes regulate this diversity gradient. A major challenge to characterizing which processes are at play relies on quantifying how the frequency and determinants of tropical and extra-tropical speciation, extinction, and dispersal events shaped evolutionary radiations. We address this question by developing and applying spatiotemporal phylogenetic and paleontological models of diversification for tetrapod species incorporating paleoenvironmental variation.
View Article and Find Full Text PDFDiverse mammal genomes open a new portal to hidden aspects of evolutionary history.
View Article and Find Full Text PDFAdmixture graphs are mathematical structures that describe the ancestry of populations in terms of divergence and merging (admixing) of ancestral populations as a graph. An admixture graph consists of a graph topology, branch lengths, and admixture proportions. The branch lengths and admixture proportions can be estimated using numerous numerical optimization methods, but inferring the topology involves a combinatorial search for which no polynomial algorithm is known.
View Article and Find Full Text PDFReplicated radiations, in which sets of similar forms evolve repeatedly within different regions, can provide powerful insights into parallel evolution and the assembly of functional diversity within communities. Several cases have been described in animals, but in plants we lack well-documented cases of replicated radiation that combine comprehensive phylogenetic and biogeographic analyses, the delimitation of geographic areas within which a set of 'ecomorphs' evolved independently and the identification of potential underlying mechanisms. Here we document the repeated evolution of a set of leaf ecomorphs in a group of neotropical plants.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2022
SignificanceGeography molds how species evolve in space. Strong geographical barriers to movement, for instance, both inhibit dispersal between regions and allow isolated populations to diverge as new species. Weak barriers, by contrast, permit species range expansion and persistence.
View Article and Find Full Text PDFIn Bayesian phylogenetic inference, marginal likelihoods can be estimated using several different methods, including the path-sampling or stepping-stone-sampling algorithms. Both algorithms are computationally demanding because they require a series of power posterior Markov chain Monte Carlo (MCMC) simulations. Here we introduce a general parallelization strategy that distributes the power posterior MCMC simulations and the likelihood computations over available CPUs.
View Article and Find Full Text PDFThe study of herbivorous insects underpins much of the theory that concerns the evolution of species interactions. In particular, Pieridae butterflies and their host plants have served as a model system for studying evolutionary arms races. To learn more about the coevolution of these two clades, we reconstructed ancestral ecological networks using stochastic mappings that were generated by a phylogenetic model of host-repertoire evolution.
View Article and Find Full Text PDFPhylogeny, molecular sequences, fossils, biogeography, and biome occupancy are all lines of evidence that reflect the singular evolutionary history of a clade, but they are most often studied separately, by first inferring a fossil-dated molecular phylogeny, then mapping on ancestral ranges and biomes inferred from extant species. Here we jointly model the evolution of biogeographic ranges, biome affinities, and molecular sequences, while incorporating fossils to estimate a dated phylogeny for all of the 163 extant species of the woody plant clade Viburnum (Adoxaceae) that we currently recognize in our ongoing worldwide monographic treatment of the group. Our analyses indicate that while the major Viburnum lineages evolved in the Eocene, the majority of extant species originated since the Miocene.
View Article and Find Full Text PDFIntimate ecological interactions, such as those between parasites and their hosts, may persist over long time spans, coupling the evolutionary histories of the lineages involved. Most methods that reconstruct the coevolutionary history of such interactions make the simplifying assumption that parasites have a single host. Many methods also focus on congruence between host and parasite phylogenies, using cospeciation as the null model.
View Article and Find Full Text PDFAlphaviruses are emerging, mosquito-transmitted RNA viruses with poorly understood cellular tropism and species selectivity. Mxra8 is a receptor for multiple alphaviruses including chikungunya virus (CHIKV). We discovered that while expression of mouse, rat, chimpanzee, dog, horse, goat, sheep, and human Mxra8 enables alphavirus infection in cell culture, cattle Mxra8 does not.
View Article and Find Full Text PDFBiotic interactions are hypothesized to be one of the main processes shaping trait and biogeographic evolution during lineage diversification. Theoretical and empirical evidence suggests that species with similar ecological requirements either spatially exclude each other, by preventing the colonization of competitors or by driving coexisting populations to extinction, or show niche divergence when in sympatry. However, the extent and generality of the effect of interspecific competition in trait and biogeographic evolution has been limited by a dearth of appropriate process-generating models to directly test the effect of biotic interactions.
View Article and Find Full Text PDFThe Hawaiian silversword alliance (Asteraceae) is an iconic adaptive radiation. However, like many island plant lineages, no fossils have been assigned to the clade. As a result, the clade's age and diversification rate are not known precisely, making it difficult to test biogeographic hypotheses about the radiation.
View Article and Find Full Text PDFBackground And Aims: Enlarged sterile flowers on the periphery of inflorescences increase the attractiveness of floral displays, and previous studies have generally demonstrated that these have positive effects on insect visitation and/or reproductive success. However, experiments have not specifically been designed to examine the benefits of sterile flowers under conditions that reflect the early stages in their evolution, i.e.
View Article and Find Full Text PDFThe relative importance of different modes of evolution in shaping phenotypic diversity remains a hotly debated question. Fossil data suggest that stasis may be a common mode of evolution, while modern data suggest some lineages experience very fast rates of evolution. One way to reconcile these observations is to imagine that evolution proceeds in pulses, rather than in increments, on geological timescales.
View Article and Find Full Text PDFBayesian phylogenetic inference aims to estimate the evolutionary relationships among different lineages (species, populations, gene families, viral strains, etc.) in a model-based statistical framework that uses the likelihood function for parameter estimates. In recent years, evolutionary models for Bayesian analysis have grown in number and complexity.
View Article and Find Full Text PDF