Relatively recent techniques that produce phase volumes have motivated the study of three-dimensional (3D) unwrapping algorithms that inherently incorporate the third dimension into the process. We propose a novel 3D unwrapping algorithm that can be considered to be a generalization of the minimum spanning tree (MST) approach. The technique combines characteristics of some of the most robust existing methods: it uses a quality map to guide the unwrapping process, a region growing mechanism to progressively unwrap the signal, and also cut surfaces to avoid error propagation.
View Article and Find Full Text PDFWhat we believe to be a novel three-dimensional (3D) phase unwrapping algorithm is proposed to unwrap 3D wrapped-phase volumes. It depends on a quality map to unwrap the most reliable voxels first and the least reliable voxels last. The technique follows a discrete unwrapping path to perform the unwrapping process.
View Article and Find Full Text PDFWe present a novel ridge extraction algorithm for use with the two-dimensional continuous wavelet transform to extract the phase information from a fringe pattern. A cost function is employed for the detection of the ridge. The results of the proposed algorithm on simulated and real fringe patterns are illustrated.
View Article and Find Full Text PDFWhat we believe to be a novel technique of branch-cut placement in the phase unwrapping is proposed. This approach is based on what we named residue vector, which is generated by a residue in a wrapped phase map and has an orientation that points out toward the balancing residue of opposite polarity. The residue vector can be used to guide the manner in which branch cuts are placed in phase unwrapping.
View Article and Find Full Text PDFA novel hybrid genetic algorithm (HGA) is proposed to solve the branch-cut phase unwrapping problem. It employs both local and global search methods. The local search is implemented by using the nearest-neighbor method, whereas the global search is performed by using the genetic algorithm.
View Article and Find Full Text PDFA novel technique that uses a fan two-dimensional (2D) continuous wavelet transform (CWT) to phase demodulate fringe patterns is proposed. The fan 2D CWT algorithm is tested by using computer generated and real fringe patterns. The result of this investigation reveals that the 2D CWT technique is capable of successfully demodulating fringe patterns.
View Article and Find Full Text PDFSuccessful imaging of living human cells using atomic force microscopy (AFM) is influenced by many variables including cell culture conditions, cell morphology, surface topography, scan parameters, and cantilever choice. In this study, these variables were investigated while imaging two morphologically distinct human cell lines, namely LL24 (fibroblasts) and NCI H727 (epithelial) cells. The cell types used in this study were found to require different parameter settings to produce images showing the greatest detail.
View Article and Find Full Text PDFWe describe a technique for the measurement of non-full-field reflective surfaces by using phase-stepping profilometry. We explain the principles of phase demodulation and discuss three-dimensional (3-D) height reconstruction in the case of measuring surfaces with reflective properties such as plain glass and mirrored glass. A number of required calibration algorithms are described to obtain surface slopes and reconstructed 3-D heights of the whole surface.
View Article and Find Full Text PDFWe describe a novel algorithm for two-dimensional phase unwrapping. The technique combines the principles of agglomerative clustering and use of heuristics to construct a discontinuous quality-guided path. Unlike other quality-guided algorithms, which establish the path at the start of the unwrapping process, our technique constructs the path as the unwrapping process evolves.
View Article and Find Full Text PDFWe present an investigation into the phase errors that occur in fringe pattern analysis that are caused by quantization effects. When acquisition devices with a limited value of camera bit depth are used, there are a limited number of quantization levels available to record the signal. This may adversely affect the recorded signal and adds a potential source of instrumental error to the measurement system.
View Article and Find Full Text PDFWe describe what is to our knowledge a novel approach to phase unwrapping. Using the principle of unwrapping following areas with similar phase values (homogenous areas), the algorithm reacts satisfactorily to random noise and breaks in the wrap distributions. Execution times for a 512 x 512 pixel phase distribution are in the order of a half second on a desktop computer.
View Article and Find Full Text PDFWe describe what is to our knowledge a novel technique for phase unwrapping. Several algorithms based on unwrapping the most-reliable pixels first have been proposed. These were restricted to continuous paths and were subject to difficulties in defining a starting pixel.
View Article and Find Full Text PDFWe present a new method for improving the measurement of three-dimensional (3-D) shapes by using color information of the measured scene as an additional parameter. The widest used algorithms for 3-D surface measurement by use of structured fringe patterns are phase stepping and Fourier fringe analysis. There are a number of problems and limitations inherent in these algorithms that include: that the phase maps produced are wrapped modulo 2pi, that in some cases the acquired fringe pattern does not fill the field of view, that there may be spatially isolated areas, and that there is often invalid and/or noisy data.
View Article and Find Full Text PDFA novel technique called a two-dimensional digital phase-locked loop (DPLL) for fringe pattern demodulation is presented. This algorithm is more suitable for demodulation of fringe patterns with varying phase in two directions than the existing DPLL techniques that assume that the phase of the fringe patterns varies only in one direction. The two-dimensional DPLL technique assumes that the phase of a fringe pattern is continuous in both directions and takes advantage of the phase continuity; consequently, the algorithm has better noise performance than the existing DPLL schemes.
View Article and Find Full Text PDFA novel technique called a two-frame digital phase-locked loop for fringe pattern demodulation is presented. In this scheme, two fringe patterns with different spatial carrier frequencies are grabbed for an object. A digital phase-locked loop algorithm tracks and demodulates the phase difference between both fringe patterns by employing the wrapped phase components of one of the fringe patterns as a reference to demodulate the second fringe pattern.
View Article and Find Full Text PDF