Publications by authors named "Michael J Kulik"

Transcription reprogramming during cell differentiation involves targeting enhancers to genes responsible for establishment of cell fates. To understand the contribution of CTCF-mediated chromatin organization to cell lineage commitment, we analyzed 3D chromatin architecture during the differentiation of human embryonic stem cells into pancreatic islet organoids. We find that CTCF loops are formed and disassembled at different stages of the differentiation process by either recruitment of CTCF to new anchor sites or use of pre-existing sites not previously involved in loop formation.

View Article and Find Full Text PDF

GM3 Synthase Deficiency (GM3SD) is a neurodevelopmental disorder resulting from pathogenic variants in the ST3GAL5 gene, which encodes GM3 synthase, a glycosphingolipid (GSL)-specific sialyltransferase. This enzyme adds a sialic acid to the terminal galactose of lactosylceramide (LacCer) to produce the monosialylated ganglioside GM3. In turn, GM3 is extended by other glycosyltransferases to generate nearly all the complex gangliosides enriched in neural tissue.

View Article and Find Full Text PDF

The temporal order of DNA replication is regulated during development and is highly correlated with gene expression, histone modifications and 3D genome architecture. We tracked changes in replication timing, gene expression, and chromatin conformation capture (Hi-C) A/B compartments over the first two cell cycles during differentiation of human embryonic stem cells to definitive endoderm. Remarkably, transcriptional programs were irreversibly reprogrammed within the first cell cycle and were largely but not universally coordinated with replication timing changes.

View Article and Find Full Text PDF

Duplication of the genome in mammalian cells occurs in a defined temporal order referred to as its replication-timing (RT) program. RT changes dynamically during development, regulated in units of 400-800 kb referred to as replication domains (RDs). Changes in RT are generally coordinated with transcriptional competence and changes in subnuclear position.

View Article and Find Full Text PDF

Background: Proteoglycans are found on the cell surface and in the extracellular matrix, and serve as prime sites for interaction with signaling molecules. Proteoglycans help regulate pathways that control stem cell fate, and therefore represent an excellent tool to manipulate these pathways. Despite their importance, there is a dearth of data linking glycosaminoglycan structure within proteoglycans with stem cell differentiation.

View Article and Find Full Text PDF

Multipotent neural crest stem cells (NCSCs) have the potential to generate a wide range of cell types including melanocytes; peripheral neurons; and smooth muscle, bone, cartilage and fat cells. This protocol describes in detail how to perform a highly efficient, lineage-specific differentiation of human pluripotent cells to a NCSC fate. The approach uses chemically defined media under feeder-free conditions, and it uses two small-molecule compounds to achieve efficient conversion of human pluripotent cells to NCSCs in ~15 d.

View Article and Find Full Text PDF

Human ESCs (hESCs) respond to signals that determine their pluripotency, proliferation, survival, and differentiation status. In this report, we demonstrate that phosphatidylinositol 3-kinase (PI3K) antagonizes the ability of hESCs to differentiate in response to transforming growth factor beta family members such as Activin A and Nodal. Inhibition of PI3K signaling efficiently promotes differentiation of hESCs into mesendoderm and then definitive endoderm (DE) by allowing them to be specified by Activin/Nodal signals present in hESC cultures.

View Article and Find Full Text PDF

The scarcity of human organs available for transplantation is clearly evident. Efforts to maximize the use of available organs and to increase the number of donors have increased the number of transplantations performed, but at a rate that remains far behind the rate of growth of the waiting list. Thus, the likelihood of a patient with severe liver disease receiving a liver replacement is decreasing.

View Article and Find Full Text PDF