Brugia malayi are thread-like parasitic worms and one of the etiological agents of Lymphatic filariasis (LF). Existing anthelmintic drugs to treat LF are effective in reducing the larval microfilaria (mf) counts in human bloodstream but are less effective on adult parasites. To test potential drug candidates, we report a multi-parameter phenotypic assay based on tracking the motility of adult B.
View Article and Find Full Text PDFVector-borne, filarial nematode diseases cause significant disease burdens in humans and domestic animals worldwide. Although there is strong direct evidence of parasite-driven immunomodulation of mammalian host responses, there is less evidence of parasite immunomodulation of the vector host. We have previously reported that all life stages of Brugia malayi, a filarial nematode and causative agent of Lymphatic filariasis, secrete extracellular vesicles (EVs).
View Article and Find Full Text PDFLymphatic filariasis (LF) is a mosquito-borne disease caused by filarial nematodes including . Over 860 million people worldwide are infected or at risk of infection in 72 endemic countries. The absence of a protective vaccine means that current control strategies rely on mass drug administration programs that utilize inadequate drugs that cannot effectively kill adult parasites, thus established infections are incurable.
View Article and Find Full Text PDFCircular RNAs (circRNAs) are a recently identified RNA species with emerging functional roles as microRNA (miRNA) and protein sponges, regulators of gene transcription and translation, and modulators of fundamental biological processes including immunoregulation. Relevant to this study, circRNAs have recently been described in the parasitic nematode, , suggesting they may have functionally important roles in parasites. Given their involvement in regulating biological processes, a better understanding of their role in parasites could be leveraged for future control efforts.
View Article and Find Full Text PDFExosomes have been considered as high-quality biomarkers for disease diagnosis, as they are secreted by cells into extracellular environments as nanovesicles with rich and unique molecular information, and can be isolated and enriched from clinical samples. However, most existing exosome assays, to date, require time-consuming isolation and purification procedures; the detection specificity and sensitivity are also in need of improvement for the realization of exosome-based disease diagnostics. This paper reports a unique exosome assay technology that enables completing both magnetic nanoparticle (MNP)-based exosome extraction and high-sensitivity photonic crystal (PC)-based label-free exosome detection in a single miniature vessel within one hour, while providing an improved sensitivity and selectivity.
View Article and Find Full Text PDFUrinary bladder cancer (UBC) is the most common malignancy of the urinary tract in humans, with an estimated global prevalence of 1.1 million cases over 5 years. Because of its high rates of recurrence and resistance to chemotherapy, UBC is one of the most expensive cancers to treat, resulting in significant health care costs.
View Article and Find Full Text PDFLymphatic filariasis (LF) is a disease caused by parasitic filarial nematodes that is endemic in 49 countries of the world and affects or threatens over 890 million people. Strategies to control LF rely heavily on mass administration of anthelmintic drugs including ivermectin (IVM), a macrocyclic lactone drug considered an Essential Medicine by the WHO. However, despite its widespread use the therapeutic mode of action of IVM against filarial nematodes is not clear.
View Article and Find Full Text PDFOne of the challenges of exploiting extracellular vesicles (EVs) as a disease biomarker is to differentiate EVs released by similar cell types or phenotypes. This paper reports a high-throughput and label-free EV microarray technology to differentiate EVs by simultaneous characterization of a panel of EV membrane proteins. The EsupplV microarray platform, which consists of an array of antibodies printed on a photonic crystal biosensor and a microscopic hyperspectral imaging technique, can rapidly assess the binding of the EV membrane proteins with their corresponding antibodies.
View Article and Find Full Text PDFHelminth parasites have a remarkable ability to persist within their mammalian hosts, which is largely due to their secretion of molecules with immunomodulatory properties. Although the soluble components of helminth secretions have been extensively studied, the discovery that helminths release extracellular vesicles (EVs) has added further complexity to the host-parasite interaction. Whilst several studies have begun to characterise the molecules carried by helminth EVs, work aimed at investigating their biological functions has been hindered by a lack of helminth-specific EV markers.
View Article and Find Full Text PDFThe filarial nematode Brugia malayi is an etiological agent of Lymphatic Filariasis. The capability of B. malayi and other parasitic nematodes to modulate host biology is recognized but the mechanisms by which such manipulation occurs are obscure.
View Article and Find Full Text PDFChan et al. recently demonstrated that the antischistosomal drug praziquantel has a potent and specific interaction with human 5-HT receptors, and that the drug also elicits contraction of mouse mesenteric vasculature apparently mediated by the same receptor subtype We consider what this might mean about the drug's molecular therapeutic targets in both the worm and the host.
View Article and Find Full Text PDFThe objective of this study was to investigate an interaction between nematodes and gut Enterobacteriaceae that use benzimidazoles as a carbon source. By addressing this objective, we identified an anthelmintic resistance-like mechanism for gastrointestinal nematodes. We isolated 30 gut bacteria (family Enterobacteriaceae) that subsist on and putatively catabolize benzimidazole-class anthelmintics.
View Article and Find Full Text PDFAn outbreak of the southern cattle tick, Rhipicephalus (Boophilus) microplus, (Canestrini), in the United States would have devastating consequences on the cattle industry. Tick populations have developed resistance to current acaricides, highlighting the need to identify new biochemical targets along with new chemistry. Furthermore, acaricide resistance could further hamper control of tick populations during an outbreak.
View Article and Find Full Text PDFLymphatic filariasis (LF) is a socio-economically devastating mosquito-borne Neglected Tropical Disease caused by parasitic filarial nematodes. The interaction between the parasite and host, both mosquito and human, during infection, development and persistence is dynamic and delicately balanced. Manipulation of this interface to the detriment of the parasite is a promising potential avenue to develop disease therapies but is prevented by our very limited understanding of the host-parasite relationship.
View Article and Find Full Text PDFThe neuromuscular system of helminths controls a variety of essential biological processes and therefore represents a good source of novel drug targets. The neuroactive substance, acetylcholine controls movement of Schistosoma mansoni but the mode of action is poorly understood. Here, we present first evidence of a functional G protein-coupled acetylcholine receptor in S.
View Article and Find Full Text PDFThe southern cattle tick (Rhipicephalus (Boophilus) microplus) is a hematophagous external parasite that vectors the causative agents of bovine babesiosis or cattle tick fever, Babesia bovis and B. bigemina, and anaplasmosis, Anaplasma marginale. The southern cattle tick is a threat to the livestock industry in many locations throughout the world.
View Article and Find Full Text PDFBackground: Neglected diseases caused by helminth infections impose a massive hindrance to progress in the developing world. While basic research on parasitic flatworms (platyhelminths) continues to expand, researchers have yet to broadly adopt a free-living model to complement the study of these important parasites.
Methods: We report the high-coverage sequencing (RNA-Seq) and assembly of the transcriptome of the planarian Girardia tigrina across a set of dynamic conditions.
Acetylcholine is the canonical excitatory neurotransmitter of the mammalian neuromuscular system. However, in the trematode parasite Schistosoma mansoni, cholinergic stimulation leads to muscle relaxation and a flaccid paralysis, suggesting an inhibitory mode of action. Information about the pharmacological mechanism of this inhibition is lacking.
View Article and Find Full Text PDFFMRFamide-like peptide (FLP) receptors are appealing as putative anthelmintic targets. To date, 31 -encoding genes have been identified in and thirteen FLP-activated G-protein coupled receptors (FLP-GPCRs) have been reported. The lack of knowledge on FLPs and FLP-GPCRs in parasites impedes their functional characterisation and chemotherapeutic exploitation.
View Article and Find Full Text PDFRestrictions on nematicide usage underscore the need for novel control strategies for plant pathogenic nematodes such as Globodera pallida (potato cyst nematode) that impose a significant economic burden on plant cultivation activities. The nematode neuropeptide signalling system is an attractive resource for novel control targets as it plays a critical role in sensory and motor functions. The FMRFamide-like peptides (FLPs) form the largest and most diverse family of neuropeptides in invertebrates, and are structurally conserved across nematode species, highlighting the utility of the FLPergic system as a broad-spectrum control target.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) represent the largest known superfamily of membrane proteins extending throughout the Metazoa. There exists ample motivation to elucidate the functional properties of GPCRs given their role in signal transduction and their prominence as drug targets. In many target organisms, these efforts are hampered by the unreliable nature of heterologous receptor expression platforms.
View Article and Find Full Text PDFBackground: G protein-coupled receptors (GPCRs) constitute one of the largest groupings of eukaryotic proteins, and represent a particularly lucrative set of pharmaceutical targets. They play an important role in eukaryotic signal transduction and physiology, mediating cellular responses to a diverse range of extracellular stimuli. The phylum Platyhelminthes is of considerable medical and biological importance, housing major pathogens as well as established model organisms.
View Article and Find Full Text PDFThis study assessed the capacity of β-lactam antibiotics to prevent salmonella-mediated encephalopathy in calves given the putative neuroprotective effects of these drugs of increasing glutamate export from the brain. Both ampicillin and ceftiofur prevented the development of encephalopathy despite resistance of the inoculated Salmonella enterica serovar Saint-Paul isolate to both drugs. A glutamate receptor antagonist also prevented this salmonella-mediated encephalopathy.
View Article and Find Full Text PDF