Int J Environ Res Public Health
March 2023
The Borderplex region has been profoundly impacted by the COVID-19 pandemic. Borderplex residents live in low socioeconomic (SES) neighborhoods and lack access to COVID-19 testing. The purpose of this study was two-fold: first, to implement a COVID-19 testing program in the Borderplex region to increase the number of residents tested for COVID-19, and second, to administer a community survey to identify trusted sources of COVID-19 information and factors associated with COVID-19 vaccine uptake.
View Article and Find Full Text PDFATP-sensitive K (K) channels contribute to exercise-induced hyperemia in skeletal muscle either locally by vascular hyperpolarization or by sympathoinhibition and decreased sympathetic vasoconstriction. However, mean arterial pressure (MAP) regulation via baroreceptors and subsequent efferent activity may confound assessment of vascular versus neural K channel function. We hypothesized that systemic K channel inhibition via glibenclamide (GLI) would increase MAP without increasing sympathetic nerve discharge (SND).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2019
Electrochemical reduction of CO to useful chemicals has been actively pursued for closing the carbon cycle and preventing further deterioration of the environment/climate. Since CO reduction reaction (CORR) at a cathode is always paired with the oxygen evolution reaction (OER) at an anode, the overall efficiency of electrical energy to chemical fuel conversion must consider the large energy barrier and sluggish kinetics of OER, especially in widely used electrolytes, such as the pH-neutral CO-saturated 0.5 M KHCO OER in such electrolytes mostly relies on noble metal (Ir- and Ru-based) electrocatalysts in the anode.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2019
Electrolysis of water to generate hydrogen fuel is an attractive renewable energy storage technology. However, grid-scale freshwater electrolysis would put a heavy strain on vital water resources. Developing cheap electrocatalysts and electrodes that can sustain seawater splitting without chloride corrosion could address the water scarcity issue.
View Article and Find Full Text PDFThe rostral ventral lateral medulla (RVLM) is a brainstem area that plays a role in regulating numerous physiological systems, especially their responsiveness to acute stress. Aging affects the responsiveness of RVLM neural circuits to acute stress. Based on the relationship between ionotropic neurotransmitter receptors in the RVLM and the physiological functions mediated via activation of these receptors, we hypothesized that in response to acute heat stress the expression of ionotropic neurotransmitter receptors in the RVLM of aged rats would be characterized by upregulation of inhibitory subunits and downregulation of excitatory subunits.
View Article and Find Full Text PDFThe rostral ventrolateral medulla (RVLM) is an area of the brain stem that contains diverse neural substrates that are involved in systems critical for physiological function. There is evidence that aging affects some neural substrates within the RVLM, although age-related changes in RVLM molecular mechanisms are not well established. The goal of the present study was to characterize the transcriptomic profile of the aging RVLM and to test the hypothesis that aging is associated with altered gene expression in the RVLM, with an emphasis on immune system associated gene transcripts.
View Article and Find Full Text PDFAging alters sympathetic nervous system (SNS) regulation, although central mechanisms are not well understood. In young rats the rostral ventral lateral medulla (RVLM) is critically involved in central SNS regulation and RVLM neuronal activity is mediated by a balance of excitatory and inhibitory ionotropic neurotransmitters and receptors, providing the foundation for hypothesizing that with advanced age the molecular substrate of RVLM ionotropic receptors is characterized by upregulated excitatory and downregulated inhibitory receptor subunits. This hypothesis was tested by comparing the relative mRNA expression and protein concentration of RVLM excitatory (NMDA and AMPA) and inhibitory (GABA and glycinergic) ionotropic neurotransmitter receptor subunits in young and aged Fischer (F344) rats.
View Article and Find Full Text PDFGhrelin influences immune system function and modulates the sympathetic nervous system; however, the contribution of ghrelin to neural-immune interactions is not well-established because the effect of ghrelin on splenic sympathetic nerve discharge (SND) is not known. This study tested the hypothesis that central ghrelin administration would inhibit splenic SND in anesthetized rats. Rats received intracerebroventricular (ICV) injections of ghrelin (1nmol/kg) or aCSF.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2015
The rising H2 economy demands active and durable electrocatalysts based on low-cost, earth-abundant materials for water electrolysis/photolysis. Here we report nanoscale Ni metal cores over-coated by a Cr2 O3 -blended NiO layer synthesized on metallic foam substrates. The Ni@NiO/Cr2 O3 triphase material exhibits superior activity and stability similar to Pt for the hydrogen-evolution reaction in basic solutions.
View Article and Find Full Text PDFA semiconducting porphyrin polymer that is solution processable and soluble in organic solvents has been synthesized, and its spectroscopic and electrochemical properties have been investigated. The polymer consists of diarylporphyrin units that are linked at meso-positions by aminophenyl groups, thus making the porphyrin rings an integral part of the polymer backbone. Hexyl chains on two of the aryl groups impart solubility.
View Article and Find Full Text PDFSilicon's sensitivity to corrosion has hindered its use in photoanode applications. We found that deposition of a ~2-nanometer nickel film on n-type silicon (n-Si) with its native oxide affords a high-performance metal-insulator-semiconductor photoanode for photoelectrochemical (PEC) water oxidation in both aqueous potassium hydroxide (KOH, pH = 14) and aqueous borate buffer (pH = 9.5) solutions.
View Article and Find Full Text PDFJ Appl Physiol (1985)
November 2013
Hyperthermia is a potent activator of visceral sympathetic nerve discharge (SND), and the functional integrity of the rostral ventral lateral medulla (RVLM) is critically important for sustaining sympathoexcitation at peak hyperthermia. However, RVLM mechanisms mediating SND activation to acute heat stress are not well understood. Because RVLM GABA is tonically inhibitory to sympathetic nerve outflow, it is plausible to hypothesize that disinhibition of RVLM sympathetic neural circuits, via withdrawal of GABAergic tone, may affect SND regulation at peak hyperthermia.
View Article and Find Full Text PDFNeuronal nitric oxide (NO) synthase (nNOS) inhibition with systemically administered S-methyl-l-thiocitrulline (SMTC) elevates mean arterial pressure (MAP) and reduces rat hindlimb skeletal muscle and renal blood flow. We tested the hypothesis that those SMTC-induced cardiovascular effects resulted, in part, from increased sympathetic nerve discharge (SND). MAP, HR, and lumbar and renal SND (direct nerve recordings) were measured in 9 baroreceptor (sino-aortic)-denervated rats for 20min each following both saline and SMTC (0.
View Article and Find Full Text PDFA method for radical coupling of porphyrins using copper(II) salts as one-electron oxidants was developed. A Zn(II)-porphyrin bearing an aminophenyl group yielded porphyrin oligomers, and two tri-arylporphyrins were oxidized to form doubly and triply linked dimers. Bromination of doubly linked dimers gave macrocycles with twisted skeletons.
View Article and Find Full Text PDFStudies completed in human subjects have made seminal contributions to understanding the effects of age on sympathetic nervous system (SNS) regulation. Numerous experimental constraints limit the design of studies involving human subjects; therefore, completion of studies in animal models of aging would be expected to provide additional insight regarding mechanisms mediating age-related changes in sympathetic nerve discharge (SND) regulation. The present review assesses the current state of the literature regarding contributions from animal studies on the effects of advancing age on SND regulation, focusing primarily on studies that have used direct recordings of sympathetic nerve outflow.
View Article and Find Full Text PDFHyperthermia is an environmental stressor that produces marked increases in visceral sympathetic nerve discharge (SND) in young rats. The brainstem in rats contains the essential neural circuitry for mediating visceral sympathetic activation; however, specific brainstem sites involved remain virtually unknown. The rostral ventral lateral medulla (RVLM) is a key central nervous system region involved in the maintenance of basal SND and in mediating sympathetic nerve responses evoked from supraspinal sites.
View Article and Find Full Text PDFInterleukin-6 (IL-6) is a multifunctional cytokine that has been shown to play a pivotal role in centrally-mediated physiological responses including activation of the hypothalamic-pituitary-adrenal axis. Cerebral spinal fluid (CSF) concentrations of IL-6 are elevated in multiple pathophysiological conditions including Alzheimer's disease, autoimmune disease, and meningitis. Despite this, the effect of IL-6 on central regulation of sympathetic nerve discharge (SND) remains unknown which limits understanding of sympathetic-immune interactions in health and disease.
View Article and Find Full Text PDFClin Exp Pharmacol Physiol
April 2007
1. Like virtually all other physiological control systems, the sympathetic nervous system controlling cardiovascular function is characterized by the presence of rhythmic activity. Despite the prevalence of rhythms, their function is often not obvious, which leads to the question, what can one learn about the neural control of autonomic function by studying sympathetic nervous system rhythms? 2.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
March 2007
Activation of the hypothalamic-pituitary-adrenal (HPA) axis and augmented plasma and tissue levels of IL-6 are hallmarks of heart failure (HF). Within the forebrain, cardiovascular homeostasis is mediated in part by the paraventricular nucleus (PVN) of the hypothalamus. IL-6, via binding to the IL-6 receptor (IL-6R)/glycoprotein 130 (gp130) complex influences cellular and physiological responses.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
September 2006
Hypothermia produced by acute cooling prominently alters sympathetic nerve outflow. Skin sympathoexcitatory responses to skin cooling are attenuated in aged compared with young subjects, suggesting that advancing age influences sympathetic nerve responsiveness to hypothermia. However, regulation of skin sympathetic nerve discharge (SND) is only one component of the complex sympathetic nerve response profile to hypothermia.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
September 2006
Splenic nerve denervation abrogates enhanced splenic cytokine gene expression responses to acute heating, demonstrating that hyperthermia-induced activation of splenic sympathetic nerve discharge (SND) increases splenic cytokine gene expression. Hypothermia alters SND responses; however, the role of the sympathetic nervous system in mediating splenic cytokine gene expression responses to hypothermia is not known. The purpose of the present study was to determine the effect of hypothermia on the relationship between the sympathetic nervous system and splenic cytokine gene expression in anesthetized F344 rats.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
October 2005
We tested the hypothesis that central angiotensin II (ANG II) administration would activate splenic sympathetic nerve discharge (SND), which in turn would alter splenic cytokine gene expression. Experiments were completed in sinoaortic nerve-lesioned, urethane-chloralose-anesthetized, splenic nerve-intact (splenic-intact) and splenic nerve-lesioned (splenic-denervated) Sprague-Dawley rats. Splenic cytokine gene expression was determined using gene-array and real-time RT-PCR analyses.
View Article and Find Full Text PDFWhole body hyperthermia (WBH) has been used in experimental settings as an adjunct to radiochemotherapy for the treatment of various malignant diseases. The therapeutic effect of WBH has been hypothesized to involve activation of the immune system, although the effect of hyperthermia-induced activation of sympathetic nerve discharge (SND) on splenic immune function is not known. We tested the hypothesis that heating-induced splenic sympathoexcitation would alter splenic cytokine gene expression as determined using gene array and real-time RT-PCR analyses.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
December 2004
In the present study, we established dose-response relationships between central administration of 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (Tempol, a superoxide dismutase mimetic) and the level of renal sympathetic nerve discharge (SND) and tested the hypothesis that intracerebroventricular (icv) Tempol pretreatment would attenuate centrally mediated changes in SND produced by icv ANG II administration. Urethane-chloralose-anesthetized, baroreceptor-denervated, normotensive rats were used. We found that icv Tempol administration produced dose-dependent sympathoinhibitory, hypotensive, and bradycardic responses.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
April 2004
Renal and splanchnic sympathetic nerve discharge (SND) responses to heating are significantly reduced in senescent compared with young Fischer-344 (F344) rats (Kenney MJ and Fels RJ. Am J Physiol Regul Integr Comp Physiol 283: R513-R520, 2002). However, the functional significance of this finding is not known.
View Article and Find Full Text PDF