Episodic recollection involves retrieving context information bound to specific events. However, autobiographical memory largely comprises recurrent, similar experiences that become integrated into joint representations. In the current study, we extracted a neural signature of temporal context from scalp electroencephalography (EEG) to investigate whether recalling a recurring event accompanies the reinstatement of one or multiple instances of its occurrence.
View Article and Find Full Text PDFJ Exp Psychol Learn Mem Cogn
September 2024
We investigated memory encoding and retrieval during a quasinaturalistic spatial-episodic memory task in which subjects delivered items to landmarks in a desktop virtual environment and later recalled the delivered items. Transition probabilities and latencies revealed the spatial and temporal organization of memory. As subjects gained experience with the town, their improved spatial knowledge led to more efficient navigation and increased spatial organization during recall.
View Article and Find Full Text PDFJ Neurosci Methods
October 2024
Background: Spectral features of human electroencephalographic (EEG) recordings during learning predict subsequent recall variability.
New Method: Capitalizing on these fluctuating neural features, we develop a non-invasive closed-loop (NICL) system for real-time optimization of human learning. Participants play a virtual navigation-and-memory game; recording multi-session data across days allowed us to build participant-specific classification models of recall success.
J Exp Psychol Learn Mem Cogn
September 2024
The Penn Electrophysiology of Encoding and Retrieval Study (PEERS) aimed to characterize the behavioral and electrophysiological (EEG) correlates of memory encoding and retrieval in highly practiced individuals. Across five PEERS experiments, 300+ subjects contributed more than 7,000 memory testing sessions with recorded EEG data. Here we tell the story of PEERS: its genesis, evolution, major findings, and the lessons it taught us about taking a big scientific approach in studying memory and the human brain.
View Article and Find Full Text PDFEncoding- and retrieval-related neural activity jointly determine mnemonic success. We ask whether electroencephalographic activity can reliably predict encoding and retrieval success on individual trials. Each of 98 participants performed a delayed recall task on 576 lists across 24 experimental sessions.
View Article and Find Full Text PDFDirect human brain recordings have confirmed the presence of high-frequency oscillatory events, termed ripples, during awake behavior. While many prior studies have focused on medial temporal lobe (MTL) ripples during memory retrieval, here we investigate ripples during memory encoding. Specifically, we ask whether ripples during encoding predict whether and how memories are subsequently recalled.
View Article and Find Full Text PDFMemory formation depends on neural activity across a network of regions, including the hippocampus and broader medial temporal lobe (MTL). Interactions between these regions have been studied indirectly using functional MRI, but the bases for interregional communication at a cellular level remain poorly understood. Here, we evaluate the hypothesis that oscillatory currents in the hippocampus synchronize the firing of neurons both within and outside the hippocampus.
View Article and Find Full Text PDFClosed-loop direct brain stimulation is a promising tool for modulating neural activity and behavior. However, it remains unclear how to optimally target stimulation to modulate brain activity in particular brain networks that underlie particular cognitive functions. Here, we test the hypothesis that stimulation's behavioral and physiological effects depend on the stimulation target's anatomical and functional network properties.
View Article and Find Full Text PDFSharing human brain data can yield scientific benefits, but because of various disincentives, only a fraction of these data is currently shared. We profile three successful data-sharing experiences from the NIH BRAIN Initiative Research Opportunities in Humans (ROH) Consortium and demonstrate benefits to data producers and to users.
View Article and Find Full Text PDFTime and space are primary dimensions of human experience. Separate lines of investigation have identified neural correlates of time and space, yet little is known about how these representations converge during self-guided experience. Here, 10 subjects with intracranially implanted microelectrodes play a timed, virtual navigation game featuring object search and retrieval tasks separated by fixed delays.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2023
Failure of contextual retrieval can lead to false recall, wherein people retrieve an item or experience that occurred in a different context or did not occur at all. Whereas the hippocampus is thought to play a crucial role in memory retrieval, we lack understanding of how the hippocampus supports retrieval of items related to a target context while disregarding related but irrelevant information. Using direct electrical recordings from the human hippocampus, we investigate the neural process underlying contextual misattribution of false memories.
View Article and Find Full Text PDFClosed-loop direct brain stimulation is a promising tool for modulating neural activity and behavior. However, it remains unclear how to optimally target stimulation to modulate brain activity in particular brain networks that underlie particular cognitive functions. Here, we test the hypothesis that stimulation's behavioral and physiological effects depend on the stimulation target's anatomical and functional network properties.
View Article and Find Full Text PDFAlthough possible to recall in both forward and backward order, recall proceeds most naturally in the order of encoding. Prior studies ask whether and how forward and backward recall differ. We reexamine this classic question by studying recall dynamics while varying the predictability and timing of forward and backward cues.
View Article and Find Full Text PDFDistinct lines of research in both humans and animals point to a specific role of the hippocampus in both spatial and episodic memory function. The discovery of concept cells in the hippocampus and surrounding medial temporal lobe (MTL) regions suggests that the MTL maps physical and semantic spaces with a similar neural architecture. Here, we studied the emergence of such maps using MTL microwire recordings from 20 patients (9 female, 11 male) navigating a virtual environment featuring salient landmarks with established semantic meaning.
View Article and Find Full Text PDFEndogenous variation in brain state and stimulus-specific evoked activity can both contribute to successful encoding. Previous studies, however, have not clearly distinguished among these components. We address this question by analysing intracranial EEG recorded from epilepsy patients as they studied and subsequently recalled lists of words.
View Article and Find Full Text PDFComputational models of rodent physiology implicate hippocampal theta as a key modulator of learning and memory (Buzsáki and Moser, 2013; Lisman and Jensen, 2013), yet human hippocampal recordings have shown divergent theta correlates of memory formation. Herweg et al. (2020) suggest that decreases in memory-related broadband power mask narrowband theta increases.
View Article and Find Full Text PDFDecades of rodent research have established the role of hippocampal sharp wave ripples (SPW-Rs) in consolidating and guiding experience. More recently, intracranial recordings in humans have suggested their role in episodic and semantic memory. Yet, common standards for recording, detection, and reporting do not exist.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2022
High-frequency oscillatory events, termed ripples, represent synchrony of neural activity in the brain. Recent evidence suggests that medial temporal lobe (MTL) ripples support memory retrieval. However, it is unclear if ripples signal the reinstatement of episodic memories.
View Article and Find Full Text PDFJ Exp Psychol Learn Mem Cogn
June 2023
The modality effect refers to the robust finding that memory performance differs for items presented aurally, as compared with visually. Whereas auditory presentation leads to stronger recency performance in immediate recall, visual presentation often produces better primacy performance (the inverse modality effect). To investigate and model these differences, we conducted two large-scale web-based immediate free recall experiments.
View Article and Find Full Text PDFObjective: The medial temporal lobe (MTL) encodes and recalls memories and can be a predominant site for interictal spikes (IS) in patients with focal epilepsy. It is unclear whether memory deficits are due to IS in the MTL producing a transient decline. Here, we investigated whether IS in the MTL subregions and lateral temporal cortex impact episodic memory encoding and recall.
View Article and Find Full Text PDFLearning and memory play a central role in emotional disorders, particularly in depression and posttraumatic stress disorder. We present a new, transdiagnostic theory of how memory and mood interact in emotional disorders. Drawing upon retrieved-context models of episodic memory, we propose that memories form associations with the contexts in which they are encoded, including emotional valence and arousal.
View Article and Find Full Text PDFObjective: Interictal epileptiform discharges (IEDs) were shown to be associated with cognitive impairment in persons with epilepsy. Previous studies indicated that IED rate, location, timing, and spatial relation to the seizure onset zone could predict an IED's impact on memory encoding and retrieval if they occurred in lateral temporal, mesial temporal, or parietal regions. In this study, we explore the influence that other IED properties (e.
View Article and Find Full Text PDFBackground: Brain stimulation has emerged as a powerful tool in human neuroscience, becoming integral to next-generation psychiatric and neurologic therapeutics. Theta-burst stimulation (TBS), in which electrical pulses are delivered in rhythmic bouts of 3-8 Hz, seeks to recapitulate neural activity seen endogenously during cognitive tasks. A growing literature suggests that TBS can be used to alter or enhance cognitive processes, but little is known about how these stimulation events influence underlying neural activity.
View Article and Find Full Text PDF