Publications by authors named "Michael J Janusz"

Background: Evaluate the potential role of p38 inhibitors for the treatment of osteoarthritis using an animal model of joint degeneration (iodoacetate-induced arthritis) and a pain model (Hargraeves assay).

Methods: P38 kinase activity was evaluated in a kinase assay by measuring the amount of phosphorylated substrate ATF2 using a phosphoATF2 (Thr71) specific primary antibody and an alkaline phosphate coupled secondary antibody and measuring the OD at 405 nm. TNFalpha and IL-1beta secretion from LPS stimulated THP-1 monocytic cells and human peripheral blood mononuclear cells were measured by ELISA.

View Article and Find Full Text PDF

This communication details the synthesis, biological activity, and binding mode of a novel class of 2-benzimidazole substituted pyrimidines. The most potent analogs disclosed showed low nanomolar activity for the inhibition of Lck kinase and a representative analog was co-crystallized with Hck (a structurally related member of the Src family kinases).

View Article and Find Full Text PDF

This communication details the synthesis, biological activity, and proposed binding mode of a novel class of tri-cyclic derivatives of 1,2-dihydro-pyrimido[4,5-c]pyridazines 1 and 2. The most potent analogs disclosed showed low nanomolar activity for the inhibition of Lck kinase.

View Article and Find Full Text PDF

A series of C-2, C-8, and N-9 trisubstituted purine based inhibitors of TNF-alpha production are described. The most potent analogs showed low nanomolar activity against LPS-induced TNF-alpha production in a THP-1 cell based assay. The SAR of the series was optimized with the aid of X-ray co-crystal structures of these inhibitors bound with mutated p38 (mp38).

View Article and Find Full Text PDF

A new class of lymphocyte specific tyrosine kinase (lck) inhibitors based on an N-4,6-pyrimidine-N-alkyl-N'-phenyl urea scaffold is described. Many of these compounds showed low-nanomolar inhibition of lck kinase activity as well as IL-2 synthesis from Jurkat cells. One of these analogs, 7i, was shown to be orally efficacious by in vivo testing in a rat adjuvant-induced arthritis study.

View Article and Find Full Text PDF

A new class of tumor necrosis factor alpha (TNF-alpha) synthesis inhibitors based on an N-2,4-pyrimidine-N-phenyl-N'-phenyl urea scaffold is described. Many of these compounds showed low-nanomolar activity against lipopolysaccharide stimulated TNF-alpha production. X-ray co-crystallization studies with mutated p38alpha showed that these trisubstituted ureas interact with the ATP-binding pocket in a pseudo-bicyclic conformation brought about by the presence of an intramolecular hydrogen bonding interaction.

View Article and Find Full Text PDF

A new class of tumor necrosis factor alpha (TNF-alpha) synthesis inhibitors based on a N-2,4-pyrimidine-N-phenyl-N'-alkyl urea scaffold is described. Many of these compounds showed low-nanomolar activity against lipopolysaccharide stimulated TNF-alpha production. Two analogs were tested in an in vivo rat iodoacetate model of osteoarthritis and shown to be orally efficacious.

View Article and Find Full Text PDF

4-Aryl-3-pyridyl and 4-aryl-3-pyrimidinyl based tumor necrosis factor-alpha (TNF-alpha) inhibitors, which contain a novel isoxazolone five-membered heterocyclic core are described. Many showed sub-micromolar activity against lipopolysaccharide-induced TNF-alpha production.

View Article and Find Full Text PDF

4-Aryl-5-pyrimidyl based cytokine synthesis inhibitors that contain a novel monocyclic, pyrazolone heterocyclic core are described. Many of these inhibitors showed low nanomolar activity against LPS-induced TNF-alpha production. One of the compounds (6e) was found to be efficacious in the rat iodoacetate (RIA) in vivo model of osteoarthritis.

View Article and Find Full Text PDF

4-Aryl-5-pyrimidyl-based cytokine synthesis inhibitors of TNF-alpha production, which contain a novel bicyclic pyrazole heterocyclic core, are described. Many of these inhibitors showed low nanomolar activity against LPS-induced TNF-alpha production in a THP-1 cell-based assay and against human p38 alpha MAP kinase in an isolated enzyme assay. The X-ray crystal structure of a bicyclic pyrazole inhibitor co-crystallized with mutated p38 (mp38) is presented.

View Article and Find Full Text PDF

Novel substituted [5,5]-bicyclic pyrzazolones are presented as inhibitors of tumor necrosis factor-alpha (TNF-alpha) production. Many of these compounds show low nanomolar activity against lipopolysaccaride (LPS)-induced TNF-alpha production in THP-1 cells. This class of molecules was co-crystallized with mutated p38, and several analogs showed good oral bioavailability in the rat.

View Article and Find Full Text PDF

2-Aryl-3-pyrimidinyl based tumor necrosis factor-alpha (TNF-alpha) inhibitors, which contain a novel bicyclic pyrazolone core, are described. Many showed low-nanomolar activity against lipopolysaccharide-induced TNF-alpha production in monocytic cells. Secondary screening data are presented for the pyrimidinyl bicyclic pyrazolones.

View Article and Find Full Text PDF

4-Aryl-5-pyridyl and 4-aryl-5-pyrimidyl based inhibitors of TNF-alpha production, which contain a novel triazole 5-member heterocyclic core, are described. Many pyridyl triazoles containing either an alkyl ether or a substituted aryl side chain on the triazole core showed sub-micromolar activity against LPS-induced TNF-alpha, while pyrimidyl triazoles containing an ethoxymethyl side chain exhibited even better inhibitory activity. Secondary screening data are presented for the pyrimidyl triazoles.

View Article and Find Full Text PDF